摘要
针对自主水下机器人的路径规划问题,提出一种基于双频识别侧扫声呐(DIDSON)的全局路径规划算法。根据双频识别侧扫声呐的物理特性对AUV进行数学建模,根据声呐的工作频率不同,将AUV分为高频、低频两种工作模式。高频模式下成像精度高,低频模式下成像范围大。文中提出了一种D2-CPP算法,根据声呐返回的识别结果,算法会自主切换AUV的工作模式,并动态规划出对应的路径点,直到覆盖所有区域。通过与割草机算法的仿真对比,证明了算法的有效性,近海实验证明了算法的可靠性。
To solve the path planning problem of autonomous underwater vehicle(AUV),a global path planning algorithm is proposed based on dual-frequency identification side-scan sonar(DIDSON).According to the physical characteristics of the DIDSON sonar,the AUV is mathematically modeled.The AUV is divided into two operating modes:high frequency and low frequency.Moreover,the image in high frequency has a higher precision and the image produced in low frequency mode has a wider range.In this paper,a DIDSON data-driven coverage path planning(D2-CPP)algorithm is proposed.After the recognition results are received by sonar,D2-CPP will switch the working mode of AUV automatically and plan dynamically a set of corresponding path points until all areas are covered.Compared with the lawnmower algorithm,the simulation and offshore experiments show that the algorithm is effective and reliable.
作者
孔祥瑞
何波
金雪
沈钺
KONG Xiang-rui;HE Bo;JIN Xue;SHEN Yue(School of Information Science and Engineering,Ocean University of China,Qingdao 266100,Shandong Province,China)
出处
《海洋技术学报》
2019年第4期45-54,共10页
Journal of Ocean Technology
基金
国家重点研发计划资助项目(2016YFC0301401)
中国博士后科学基金特别资助项目(2018T110708)