期刊文献+

一类二阶泛函微分方程正解的存在性 被引量:1

Existence of positive solutions for a class of second order functional differential equations
下载PDF
导出
摘要 研究了Banach空间中二阶泛函微分方程四点边值问题正解的存在性。在-1<ω≤0及-r<ω≤0两种情形下,通过在Banach空间中构造一个合适的锥,并在锥中定义一个正算子,利用锥上的不动点定理,证明了该问题正解的存在性。最后,作为主要结果的应用,建立了两个具体的泛函微分方程多重正解的存在性结果。 The existence of positive solutions for four point second order functional differential equations in Banach space is studied.In both case-1<ω≤0 and-r<ω≤0,by constructing an appropriate cone in the Banach space and defining a positive operator in the cone,using the Krasnoselskii fixed point theorem on cones,the existence of positive solution to the problem is proved.Finally,as an application of the main results,the existence of multiple positive solutions of two specific functional differential equations is established.
作者 刘洋 范虹霞 LIU Yang;FAN Hong-xia(School of Mathematics and Physics,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《陕西理工大学学报(自然科学版)》 2019年第4期66-72,共7页 Journal of Shaanxi University of Technology:Natural Science Edition
基金 国家自然科学基金资助项目(11561040)
关键词 不动点 时滞 正解 边值问题 fixed point delay positive solutions boundary value problem
  • 相关文献

参考文献3

二级参考文献11

  • 1WENG PEIXUAN.BOUNDARY VALUE PROBLEMS FOR SECOND ORDER MIXED-TYPE FUNCTIONAL DIFFERENTIAL EQUATIONS[J].Applied Mathematics(A Journal of Chinese Universities),1997,12(2):155-164. 被引量:6
  • 2刘锡平,贾梅.一类具复杂偏差变元的Liénard方程的周期解[J].工程数学学报,2005,22(2):361-364. 被引量:3
  • 3II'in V A, Moiseev E I. Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects. Differential Equations, 1987, 23(7): 803-810.
  • 4II'in V A, Moiseev E I. Nontocal boundary value problem of the first kind for a Sturm-Liouville operator. Differential Equations, 1987, 23(8): 979 -987.
  • 5Gupta C P. Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation. J Math Anal Appl, 1992, 168:540-551.
  • 6Ma R. Positive solutions of a nonlinear m-point boundary value problem. Computers and Mathematics with Applications, 2001, 42:755-765.
  • 7Ma R. Positive solutions of a nonlinear three-point boundary value problem. Electron J Differential Equations, 1999, 34:1- 8.
  • 8Zhang G, Sun J. Positive solutions of m-point boundary value problem. J Math Anal Appl, 2004, 291(2): 404-418.
  • 9Dong S, Ge W. Positive solutions of m-point boundary value problem with sign change nonlinearities. Computers and Mathematics with Applications, 2005, 49:589-598.
  • 10翁佩萱,蒋达清.奇异二阶泛函微分方程边值问题的多重正解[J].应用数学学报,2000,23(1):99-107. 被引量:15

共引文献20

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部