期刊文献+

生成式对抗网络的通信网络安全技术

Communication Network Security Technology Based on Generative Adversarial Networks
下载PDF
导出
摘要 为了更好地解决通信网络中存在的恶意攻击,保护用户数据安全,通过生成式对抗网络的生成模型和判别模型相互博弈不断优化,构造成最优判别器,可以对数据攻击进行检测。主要介绍生成式对抗网络(GANs)和Wasserstein生成式对抗网络的区别、模型及算法,通过研究GAN与WGAN梯度消失问题,实验证实WGAN可以有效地解决网络收敛性差、模型自由不可控、训练不稳定等问题,具有更好的性能。 In order to better solve the current malicious attacks in the communication network and protect user data security,the optimal discriminator is constructed via mutual gaming and optimization between generative and discriminant models of generative adversarial networks(GAN)and thus it can be used to detect data attacks.This article mainly introduces the differences,models and algorithms of both GANs and Wasserstein GANs(WGAN)via investigating the corresponding issue of gradient disappearance.The experiments prove that WGAN can effectively solve problems such as poor network convergence,uncontrollable model,unstable training and yield a better performance.
作者 夏蕊 马宏斌 XIA Rui;MA Hongbin(Heilongjiang University,Harbin 150000,China)
机构地区 黑龙江大学
出处 《移动通信》 2019年第8期21-24,共4页 Mobile Communications
关键词 生成式对抗网络 深度学习 网络安全 梯度法 generative adversarial networks deep learning network security gradient method
  • 相关文献

参考文献4

二级参考文献26

  • 1王飞跃.平行系统方法与复杂系统的管理和控制[J].控制与决策,2004,19(5):485-489. 被引量:332
  • 2王飞跃.计算实验方法与复杂系统行为分析和决策评估[J].系统仿真学报,2004,16(5):893-897. 被引量:147
  • 3于林森,张田文.基于视觉与标注相关信息的图像聚类算法[J].电子学报,2006,34(7):1265-1269. 被引量:6
  • 4王飞跃.关于复杂系统的建模、分析、控制和管理[J].复杂系统与复杂性科学,2006,3(2):26-34. 被引量:64
  • 5K Mikolajczyk, C Schmid. A performance evaluation of local descriptors[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(10) : 1615 - 1630.
  • 6J Zhang, et al. Local features and kiemels for classification of texture and object categories: a comprehensive study[J]. International Journal of Computer Vision, 2007.73 (2) : 213 - 238.
  • 7R Fergus, et al. Object class recognition by unsupervised scaleinvariant learning[A]. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C]. Madison: IEEE, 2003. Vol. 2:264 - 271.
  • 8B Leibe, A Leonardis, B Schiele. Combined object categorization and segmentation with and implicit shape model[ A]. ECCV'04 workshop on Statistical Learning in Computer Vision [C]. Prague: Springer, 2004.17 - 32.
  • 9W Zhang, et al. Object class recognition using multiple layer boosting with heterogenous features[ A ]. Proceedings of IEEE Computer Society Coference on Computer Vision and Pattern Recognition[ C]. San Diego: IEEE, 2005.66 - 73.
  • 10H Zhang,et al. Svm-knn:Discriminafive nearest neighbor classification for visual category recognition [ A ]. Proceedings of IEEE Computer Society Coference on Computer Vision and Pattem Recognition[ C] .New York: 1EEE, 2006.2126- 2136.

共引文献361

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部