摘要
为使混合交通流(Mixed Traffic Stream,MTS)下智能网联车(Intelligent Connected Vehicle,ICV)实现鸣笛意图(Horn’s Intention,HI)识别,更好地遵循常规车辆(Manual Vehicle,MV)的驾驶意图,提出ICV对MV鸣笛声的“感知(Perception)—定位(Location)—识别(Recognition)”模型(简称HI-PLR),采用深度卷积—循环神经网络(Deep Convolution Recurrent Neural Network,DCRNN)算法感知鸣笛车辆(Horning Vehicles,HV)的鸣笛声;采用到达时差(Time Difference of Arrival,TDOA)算法定位HV;再基于运动时间窗(Motion Time Window,MTW)的支持向量机(Support Vector Machine,SVM)算法识别HI.实验结果表明,HI-PLR可使ICV对混流中车辆的鸣笛声感知准确率达90.4%,定位角度估计误差小于5°,HI识别率达82.5%,为ICV在MTS中的智能驾驶决策提供依据.
With the aim that intelligent connected vehicles is able to identify horn's intention to follow the driving intention of the conventional vehicles better under the mixed traffic stream,perception-location-recognition model is proposed of ICV to the horn of conventional vehicles.Deep convolution recurrent neural network is used to percept the horn of the horning vehicles.time difference of arrival is exploited for the location of the HV.Support vector machine based on motion time window is applied to recognize the HI of the HV.The experimental results indicate that such a model enables the average accuracy rate of perception that the ICV conducts on the horn of the HV in the mixed traffic stream to amount to 90.4%,the error of positioning angle is within 5 degrees and the average recognition rate of HI is 82.5%,which provides the basis for the intelligent driving decision of the ICV in the mixed traffic stream.
作者
梁军
徐鹏
蔡英凤
陈龙
华国栋
LIANG Jun;XU Peng;CAI Ying-feng;CHEN Long;HUA Guo-dong(Automotive Engineering Research Institute,Jiangsu University,Zhenjiang 212013,Jiangsu,China;Jiangsu Zhixing Future Automobile Research Institute,Nanjing 210000,China)
出处
《交通运输系统工程与信息》
EI
CSCD
北大核心
2019年第4期55-62,共8页
Journal of Transportation Systems Engineering and Information Technology
基金
国家重点研发计划(2018YFB1600500)
国家自然科学基金(U1664258)
江苏省研究生实践创新计划项目(sjcx18_0746)~~
关键词
智能交通
鸣笛意图识别
HI-PLR模型
智能网联车
混合交通流
intelligent transportation
recognition of horn’s intention
HI-PLR model
intelligent connected vehicle
mixed traffic stream