期刊文献+

面向混合交通流的智能网联车鸣笛意图识别模型 被引量:4

Identification Model for Horn’s Intention of Intelligent Connected Vehicle under the Mixed Traffic Stream
下载PDF
导出
摘要 为使混合交通流(Mixed Traffic Stream,MTS)下智能网联车(Intelligent Connected Vehicle,ICV)实现鸣笛意图(Horn’s Intention,HI)识别,更好地遵循常规车辆(Manual Vehicle,MV)的驾驶意图,提出ICV对MV鸣笛声的“感知(Perception)—定位(Location)—识别(Recognition)”模型(简称HI-PLR),采用深度卷积—循环神经网络(Deep Convolution Recurrent Neural Network,DCRNN)算法感知鸣笛车辆(Horning Vehicles,HV)的鸣笛声;采用到达时差(Time Difference of Arrival,TDOA)算法定位HV;再基于运动时间窗(Motion Time Window,MTW)的支持向量机(Support Vector Machine,SVM)算法识别HI.实验结果表明,HI-PLR可使ICV对混流中车辆的鸣笛声感知准确率达90.4%,定位角度估计误差小于5°,HI识别率达82.5%,为ICV在MTS中的智能驾驶决策提供依据. With the aim that intelligent connected vehicles is able to identify horn's intention to follow the driving intention of the conventional vehicles better under the mixed traffic stream,perception-location-recognition model is proposed of ICV to the horn of conventional vehicles.Deep convolution recurrent neural network is used to percept the horn of the horning vehicles.time difference of arrival is exploited for the location of the HV.Support vector machine based on motion time window is applied to recognize the HI of the HV.The experimental results indicate that such a model enables the average accuracy rate of perception that the ICV conducts on the horn of the HV in the mixed traffic stream to amount to 90.4%,the error of positioning angle is within 5 degrees and the average recognition rate of HI is 82.5%,which provides the basis for the intelligent driving decision of the ICV in the mixed traffic stream.
作者 梁军 徐鹏 蔡英凤 陈龙 华国栋 LIANG Jun;XU Peng;CAI Ying-feng;CHEN Long;HUA Guo-dong(Automotive Engineering Research Institute,Jiangsu University,Zhenjiang 212013,Jiangsu,China;Jiangsu Zhixing Future Automobile Research Institute,Nanjing 210000,China)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2019年第4期55-62,共8页 Journal of Transportation Systems Engineering and Information Technology
基金 国家重点研发计划(2018YFB1600500) 国家自然科学基金(U1664258) 江苏省研究生实践创新计划项目(sjcx18_0746)~~
关键词 智能交通 鸣笛意图识别 HI-PLR模型 智能网联车 混合交通流 intelligent transportation recognition of horn’s intention HI-PLR model intelligent connected vehicle mixed traffic stream
  • 相关文献

参考文献3

二级参考文献14

  • 1Chengalvarayan R. Robust Energy Normalization Using Speech/Nonspeech Discrimination for German Connected DigitRecognition Proc[C]//Eurospeech99. Budapest: Elsevier Science Publishers, 1999: 8-9.
  • 2Asano F, Asoh H, Matsui T. Sound Source Localization and Separation in Near Field[J]. IEICE Trans Fundamentals, 2000, E83-A(11): 2286-2294.
  • 3Nemer E, Goubran R, Mahmoud S. Robust Voice Activity Detection Using Higher-order Statistics in the LPC Residual Domain[J].IEEE Trans on Speech and Audio Processing, 2001, 9(3) : 217-231.
  • 4Mennitt D, Johnson M. Multiple-array Passive Acoustic Source Localization in Urban Environments [J].Acoustical Society of America, 2010, 127(5) : 2932-2942.
  • 5Lindgren D, Wilsson O, Gustafsson F, et al. Shooter Localization in Wireless Sensor Networks [C] //Proc of the 12th International Conference on Information Fusion. Seattle: IEEE, 2009: 404-411.
  • 6Markovi c I, Petrovi c I. Speaker Localization and Tracking with a Microphone Array on a Mobile Robot Using Von Mises Distribution and Particle Filtering[J]. Robotics and Autonomous Systems, 2010, 58(11): 1185-1196.
  • 7孙懋珩,俞莹婷.汽车鸣笛声定位系统仿真[J].声学技术,2009,28(5):640-644. 被引量:10
  • 8吕岸,胡振程,陈慧.基于高斯混合隐马尔科夫模型的高速公路超车行为辨识与分析[J].汽车工程,2010,32(7):630-634. 被引量:28
  • 9张利平,冯宏伟,王艳.基于元音检测的汉语连续语音端点检测方法[J].计算机工程与应用,2010,46(27):114-116. 被引量:3
  • 10宗长富,王畅,何磊,郑宏宇,张泽星.基于双层隐式马尔科夫模型的驾驶意图辨识[J].汽车工程,2011,33(8):701-706. 被引量:30

共引文献36

同被引文献19

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部