期刊文献+

BIM环境下集成用户行为的建筑能耗预测 被引量:7

Building Energy Consumption Prediction Integrated Occupant Behavior Under BIM Environment
下载PDF
导出
摘要 随着建筑能耗在社会总能耗中占比持续增长,世界各国愈加重视对建筑能耗的预测分析与运营控制。目前,考虑用户行为影响的研究多集中在建筑的运营阶段,设计阶段则相对不足。为在设计阶段集成用户行为以准确预测建筑能耗,本文首先将用户行为分为移动行为和用能行为。采用事件机制分析移动行为,通过BIM模型和Agent技术建立基于事件的用户移动行为模型。在此基础上,建立用户用能行为模型,模拟室内环境、人员和设备三者之间的交互作用,获取室内人员和设备运行工况的时间序列信息。最后,以武汉市某办公建筑为例分析建筑能耗,结果表明,与传统方法相比,本文方法所得到的能耗预测值更接近于实测值。 As building energy consumption continues to grow in total social energy consumption,countries around the world are paying more attention to predictive analysis and operational control of building energy consumption.At present,the study of occupant behavior is mainly concentrated in the operational phase of the building,while the design phase is relatively insufficient.In order to accurately predict the building energy consumption during the design phase,this paper divides occupant behavior into mobile behavior and occupants energy behavior.Event mechanism is applied to analyze the mobile behavior,and an event-based occupants behavior model is established through BIM model and Agent technology.On this basis,the occupant energy behavior model is established to simulate the interaction between the indoor environment,occupants and devices,and to obtain time series information of indoor occupants behavior and devices operating conditions.Finally,an office building in Wuhan is taken as an example to analyze the energy consumption of buildings.The results showed that compared with the traditional method,the energy consumption prediction value obtained by this method is closer to the measured value.
作者 刘佳静 骆汉宾 陈宁宁 李泽宇 LIU Jia-jing;LUO Han-bin;CHEN Ning-ning;LI Ze-yu(School of Civil Engineering&Mechanics,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《土木工程与管理学报》 北大核心 2019年第4期148-153,共6页 Journal of Civil Engineering and Management
基金 国家自然科学基金(71732001 51678265 71821001)
关键词 建筑能耗 BIM 用户行为 AGENT技术 building energy consumption BIM occupant behavior agent technology
  • 相关文献

参考文献3

二级参考文献15

  • 1清华大学DeST开发组.建筑环境系统模拟分析方法-DeST[M].北京:中国建筑工业出版社,2006:310-311.
  • 2Macdonald I, Strachan P. Practical application of uncertainty analysis[ J]. Energy and Buildings, 2001, 33 (3) :219-227.
  • 3Clevenger C M, Haymaker J. THE IMPACT OF THE BUILDING OCCUPANT ON ENERGY MODELING SIMULATIONS. 2001. 1-10.
  • 4Wang D, Federspiel C C, Rubinstein F. Modeling occupancy in single person offices[ J]. Energy and Buildings, 2005, 37 (2) : 121-126.
  • 5Chang W K, Hong T. Statistical analysis and modeling of occupancy patterns in open-plan offices using measured lighting- switch data [ J ]. Building Simulation, 2013, 6 ( 1 ) : 23-32.
  • 6Page J, Robinson D, Morel N, et al. A generalised stochastic model for the simulation of occupant presence [ J ]. Energy and Buildings, 2008, 40 ( 2 ) : 83-98.
  • 7Dong B, Lain K P, Neuman C P. Integrated building control based on occupant behavior pattern detection and local weather forecasting [ C ]// Proceedings of Building Simulation 2011, 12th Conference of International Building Performance Simulation Association. 2011 : 193-200.
  • 8Dong B, Andrews B, Lam K P, et al. An information technology enabled sustainability testbed (ITEST) for occupancy detection through an environmental sensing network [ J ]. Energy and Buildings, 2010, 42(7):1038-1046.
  • 9Richardson I, Thomson M, Infield D. A high-resolution domestic building occupancy model for energy demand simulations [ J ]. Energy and Buildings, 2008, 40(8) :1560-1566.
  • 10Liao C, Lin Y, Barooah P. Agent-based and graphical modelling of building occupancy [ J ]. Journal of Building Performance Simulation, 2012, 5 ( 1 ) :5-25.

共引文献20

同被引文献100

引证文献7

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部