期刊文献+

加权空-谱联合保持嵌入的高光谱遥感影像降维方法 被引量:7

Dimensionality reduction method for hyperspectral images based on weighted spatial-spectral combined preserving embedding
下载PDF
导出
摘要 高光谱遥感影像数据量大、波段数多,容易导致“维数灾难”。传统流形学习方法一般仅考虑其光谱特征,忽略了空间信息。为此提出一种非监督的基于加权空-谱联合保持嵌入(WSCPE)的维数约简算法。首先采用加权均值滤波(WMF)方法对高光谱影像进行滤波,以消除噪点和背景点的干扰。然后根据遥感影像地物分布的空间一致性,通过采用加权空-谱联合距离(WSCD)来融合像素点的光谱信息和空间信息,有效选取各像素点的空-谱近邻,并根据像素点与其空-谱近邻点之间的坐标距离来有区别的利用其近邻点进行流形重构,提取低维鉴别特征进行地物分类。在PaviaU和Indian Pines数据集上的分类结果表明,总体分类精度分别达到了98.89%和95.47%。该方法在反映影像内部流形结构的同时,有效融合了影像的空间-光谱信息,故能提高影像特征的鉴别性,并提升分类性能。 Hyperspectral image(HSI)contains a large number of spectral bands,which easily leads to the curse of dimensionality.However,the traditional manifold learning methods generally only consider the spectral features,while the spatial information of HSI is ignored.To overcome this shortcoming,it is proposed that an unsupervised dimensionality reduction algorithm called weighted spatial-spectral combined preserving embedding(WSCPE)for HSI classification.Firstly,the proposed algorithm uses a weighted mean filter(WMF)to filter the image,which can reduce the influence of background noise.Then,according to the spatial consistency property of HSI,it adopts the weighted spatial-spectral combined distance(WSCD)to fuse the spectral and spatial information of pixels to effectively select the spatial-spectral neighbors of each pixel.Finally,the proposed method explores the coordinate distances between pixels and their spatial-spectral neighbors to perform manifold reconstruction,and the low-dimensional discriminative features are extracted for HSI classification.The experimental results on PaviaU and Indian Pines datasets indicate that the overall classification accuracies of the proposed method reached 98.89%and 95.47%,respectively.The WSCPE method not only discovers the intrinsic manifold structure of HSI data,but also effectively integrates the spatial-spectral combined information,which enhances the classification performance.
作者 黄鸿 石光耀 段宇乐 张丽梅 HUANG Hong;SHI Guangyao;DUAN Yule;ZHANG Limei(Key Laboratory of Optoelectronic Technique and System of Ministry of Education,Chongqing University,Chongqing 400044,China)
出处 《测绘学报》 EI CSCD 北大核心 2019年第8期1014-1024,共11页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(41371338) 重庆市基础研究与前沿探索项目(cstc2018jcyjAX0093) 重庆市研究生科研创新项目(CYB18048)~~
关键词 高光谱遥感影像 流形学习 维数约简 空-谱近邻 鉴别特征 hyperspectral remote sensing image manifold learning dimensionality reduction spatial-spectral neighbors discriminant features
  • 相关文献

参考文献4

二级参考文献21

  • 1Rodarmel C, Shah J. Principal component analysis for hyperspectral image classification [J]. Surveying and Land Information Systems, 2002, 62(2): 115-122.
  • 2Etemad K, CheUappa R. Discriminant analysis for recognition of human face images [J]. Journal of Optical Society of America A, 1997, 14(8): 1724-1733.
  • 3Schoikopf B, Skola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem [J]. Neural Computation, 1998, 10(5): 1299-1319.
  • 4Mika S, Ratsch G, Weston J, et al. Fisher discriminant analysis with kernels [C]//Proceedings of the 1999 IEEE Signal Processing Society Workshop, 1999: 41-48.
  • 5Bachmann C M, Ainsworth T L, Fusina R A. Exploiting manifold geometry in hyperspectral imagery [JJ. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43 (3): 441-454.
  • 6Kim D H, Finkel L H. Hyperspectral image processing using locally linear embedding [C]//Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering,2003: 316-319.
  • 7Tian Han, Goodenough D G. Nonlinear feature extraction of hyperspectral data based on locally linear embedding (LLE) [C]//Proceedings of Geoscience and Remote Sensing Symposium, 2005: 1237-1240.
  • 8He Xiaofei, Cai Deng, Yah Shuicheng, et al. Neighborhood preserving embedding [C]//Proceedings of 10th IEEE International Conference on Coumputer Vision, 2005: 1208- 1213.
  • 9Mohan A, Sapion G, Bosch E, Spatially coherent nonlinear dimensionality reduction and segmentation of hyperspectral images [J]. IEEE Geoscienee and Remote Sensing Letters, 2007, 4(2): 206-210.
  • 10Buades A, Coil B, Morel J M. On image denoising methods [J]. SIAM Multiseale Modeling Simul, 2005, 4(2):490-530.

共引文献35

同被引文献58

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部