期刊文献+

具有输入和输出约束的高阶随机系统神经网络控制 被引量:2

Adaptive neural control for uncertain high-order stochastic nonlinear systems with input and output constraints
下载PDF
导出
摘要 针对高阶非线性系统,开展自适应神经网络跟踪控制器设计,系统受到随机扰动的影响.首次把输入和输出约束问题引入到高阶系统的跟踪控制中,并假定系统动态是未知.首先借用高斯误差函数表达连续可微的非对称饱和模型以实现输入约束,和障碍Lyapunov函数保证系统输出受限;其次,针对高阶非线性系统,径向基函数(RBF)神经网络用来克服未知系统动态和随机扰动.在每一步的backstepping计算中,仅用到单一的自适应更新参数,从而克服了过参数问题;最后,基于Lyapunov稳定性理论提出自适应神经网络控制策略,并减少了学习参数.最终结果表明设计的控制器能保证所有闭环信号半全局最终一致有界,并能使跟踪误差收敛到零值小的邻域内.仿真研究进一步验证了提出方法的有效性. This paper presents the problem of adaptive neural tracking control for a class of high-order nonlinear systems subject to stochastic disturbances.It is the first time that input and output constraints are introduced into the design of controllers of higher-order systems,and it is assumed that unknown system dynamics are unknown.First,the Gaussian error function is employed to represent a continuous differentiable asymmetric saturation nonlinearity,and barrier Lyapunov functions are designed to ensure that the output parameters are restricted.Second,for high-order nonlinear systems,radial basis function(RBF)neural networks are employed to tackle the difficulties caused by completely unknown system dynamics and stochastic disturbances.At each recursive step of backstepping design,only one adaptive parameter is constructed to overcome the over-parameterization.At last,based on the Lyapunov stability method,the adaptive neural control method is proposed,which decreases the number of learning parameters.It is shown that the designed controller can ensure that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small neighborhood of the origin.The simulation studies are provided to further illustrate the effectiveness of the proposed method.
作者 司文杰 王东署 SI Wen-jie;WANG Dong-shu(School of Electrical and Control Engineering,Henan University of Urban Construction,Pingdingshan Henan 467036,China;School of Electrical Engineering,Zhengzhou University,Zhengzhou Henan 450001,China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2019年第8期1250-1258,共9页 Control Theory & Applications
基金 国家自然科学基金项目(61803145)资助~~
关键词 自适应控制系统 神经网络 高阶随机非线性系统 障碍Lyapunov函数 输入和输出约束 adaptive control systems neural networks high-order stochastic nonlinear systems barrier Lyapunov function(BLF) input and output constraints
  • 相关文献

参考文献4

二级参考文献47

  • 1李扬,李应红,吴云.基于方差分析的某轴流式压气机失速征兆起始检测[J].航空计算技术,2005,35(1):104-105. 被引量:10
  • 2EPSTEIN A H,WILLIANMS J E,GREITZER E M.Active suppression of aerodynamic instabilities in turbomachines[J].Journal of Propulsion and Power,1989,5(2):204-211.
  • 3PADUANO J D,EPSTEIN A H,VALAVANI L,et al.Active control of rotating stall in a low-speed axial compressor[J].ASME Journal of Turbomachinery,1993,115(1):48-56.
  • 4DAY I J.Stall inception in axial flow compressor[J].ASME Journal of Turbomachinery,1993,113(1):1-9.
  • 5HAYNES J M,HENDRICHS G J,EPSTEIN A H.Active stabilization of rotating stall in a three-stage axial compressor[J].ASME Journal of Turbomachinery,1994,116(2):226-239.
  • 6WANG Y,MURRAY R M.Bifurcation control of rotating stall with actuator magnitude and rate limits:Part Ⅰ-model reduction and qualitative dynamics[J].Automatica,2002,38(4):597-610.
  • 7LONGLEY J P.Inlet distortion and compressor instabilities[D].Cambridge:Cambridge University,1988.
  • 8GARNIER V H,EPSTEIN A H,GREITZER E M.Rotating wave as a stall inception indication in axial compressors[J].ASME Journal of Turbomachinery,1991,113(2):290-301.
  • 9TRYFONIDIS M,ETCHEVERS O,PADUANO J D,et al.Prestall behavior of several high-speed compressors[J].ASME Journal of Turbomachinery,1995,117(1):62-80.
  • 10HOSS B,LEINHOS D,FOTTNER L.Stall inception in the compressor system of a turbofan engine[J].ASME Journal of turbomachinery,1998,122(1):32-43.

共引文献36

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部