期刊文献+

基于半监督深度生成对抗网络的图像识别方法 被引量:6

Image Recognition Based on Semi Supervised Deep Convolutional Generative Adversarial Networks
下载PDF
导出
摘要 基于生成对抗网络的图像识别方法拥有很高的识别率,但训练时需要大量有标签样本,在有标签样本较少的情况时识别效果不佳。针对这个问题,结合深度卷积生成对抗网络和半监督生成对抗网络的特点建立半监督深度生成对抗网络。根据有标签样本和无标签样本分布,模型生成拟合真实分布的样本输入并训练分类器,增加了训练样本数从而提升识别率。将模型优化调整并进行图像识别实验,结果表明,该方法仅用少量有标签样本即可实现准确的图像识别。 The image recognition method based on GAN(generative adversarial networks)has a high recognition rate,but a large number of labeled samples are needed for training.Therefore,when the number of labeled samples is small,the performance of this method is poor.In order to solve this problem,a SS-DCGAN(semi supervised deep convolutional generative adversarial networks)is established,which combines the characteristics of DCGAN(deep convolutional generative adversarial networks)and SSGAN(semi supervised generative adversarial networks).According to the distribution of labeled samples and unlabeled samples,the model generates samples that fit the real data distribution and trains the classifier,and increases the number of training samples to improve the recognition rate.The model was optimized,and the experiments of image recognition were carried out.The results show that the method can realize accurate image recognition with only a small number of labeled samples.
作者 曾琦 向德华 李宁 肖红光 ZENG Qi;XIANG De-hua;LI Ning;XIAO Hong-guang(School of Computer&Communication Engineering,Changsha University of Science&Technology,Changsha 410114,China;Hunan Institute of Metrology and Test,Changsha 410014,China)
出处 《测控技术》 2019年第8期37-42,共6页 Measurement & Control Technology
基金 国家自然科学基金青年科学基金项目(41201468) 国家公益性行业科研专项(201510003-5)
关键词 生成对抗网络 半监督 深度卷积网络 图像识别 GAN semi supervised deep convolutional networks image recognition
  • 相关文献

参考文献3

二级参考文献43

  • 1沈兰荪,王爱民,卫保国,王永刚,赵忠旭.图像分析技术在舌诊客观化中的应用[J].电子学报,2001,29(z1):1762-1765. 被引量:61
  • 2张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 3Reddick W E,Glass J Q,Cook E N,et al.Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks[J].IEEE Transactions on Medical Imaging,1997,16(6):911-918.
  • 4Tang Yuan Y,Tao Yu,Lam Ernest C M.New method for feature extraction based on fractal behavior[J].Pattern Recognition,2002,55(5):1 071-1 081.
  • 5Chen Li,Yap Kim-Hui.A fuzzy K-nearest-neighbor algorithm to blind image deconvolution[A].IEEE International Conference on Systems, Man and Cybernetics,2003-03:2 049-2 054.
  • 6Karayiannis N B,Pai P I.Fuzzy vector quantization algorithms and their application in image compression[J].IEEE Transactions on Image Processing,1995,4(9):1 193-1 201.
  • 7Han J H,Kim Y K.A fuzzy K-NN algorithm using weights from the variance of membership values[A].IEEE Computer Society Conference on Computer Vision and Pattern Recognition,1999-02:394-399.
  • 8Hanmandlu M,Mohan K R M,Chakraborty S.Fuzzy logic based handwritten character recognition[A].International Conference on Image Processing,2001-03:42-45.
  • 9Kohir V V,Desai U B.Face recognition[A].IEEE International Symposiumon Circuits and Systems,2000-05:305-308.
  • 10Sanderson C,Paliwal K K.Fast feature extraction method for robust face verification[J].Electronics Letters,2002,38(25).

共引文献601

同被引文献28

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部