期刊文献+

局部全变分卡通纹理分解医学影像滤波 被引量:1

Medical image filtering based on local total variation cartoon-texture decomposition
下载PDF
导出
摘要 针对直接采用全局滤波方法会模糊图像的边缘,丢失重要纹理信息的弊端,提出一种基于快速变分卡通纹理分解的非局部正则化滤波方法。首先将非线性局部全变分作为图像分解的指示函数,分离图像的卡通结构分量和纹理震荡分量;其次根据震荡分量极强的重复性及结构方向性,结合具有较好方向选择性以及块相似匹配性的非局部梯度正则项,利用分裂Bregman方法求解震荡分量的非局部全变分极小化问题;最后将分解得到的卡通分量与去除噪声的震荡分量进行加权合成,得到复原图像。实验结果表明该算法对有精细结构和纹理的医学图像具有更佳的恢复效果,可以有效地应用于临床诊断以及后续分割。 In view of the disadvantages of the direct use of global filtering method,blurring image edges and losing important texture information,a nonlocal regularization filtering method based on fast variation cartoon-texture decomposition is proposed.Firstly,the nonlinear local total variation is used as an indicator function of image decomposition for separating the cartoon structural component and texture vibration component of the image.Secondly,according to the outstanding repeatability and structural orientation of the vibration component,a nonlocal gradient regular term with preferable directional selectivity and block similarity matching is combined with split Bregman method to solve the nonlocal total variation minimization problem of the vibration component.Finally,the combination of the decomposed cartoon component and the vibration component after noise removal is used for obtaining the restored image.The experimental results show that the proposed algorithm has excellent recovery effects for medical images with fine structure and texture.The proposed method can be effectively applied to clinical diagnosis and subsequent segmentation.
作者 王静 韩雪 皇甫彩虹 乔应旭 司马海峰 WANG Jing;HAN Xue;HUANGPU Caihong;QIAO Yingxu;SIMA Haifeng(College of Computer Science and Technology,He'nan Polytechnic University,Jiaozuo 454000,China;College of Electrical Engineering and Automation,He'nan Polytechnic University,Jiaozuo 454000,China)
出处 《中国医学物理学杂志》 CSCD 2019年第8期918-923,共6页 Chinese Journal of Medical Physics
基金 国家自然科学基金(61401150,61472119,61572173,61602-157) 河南省科技攻关计划(182102210053) 河南省科技创新杰出青年计划(184100510009) 河南理工大学博士基金(B2013-039) 河南省高校基本科研业务费专项资金(NSFRF1604)
关键词 图像滤波 卡通纹理 局部全变分 非局部均值 image filtering cartoon-texture local total variation nonlocal means
  • 相关文献

参考文献4

二级参考文献47

  • 1A K Katsaggelos. Digital Image Restoration[M]. New York: SpringerVerlag, 1991.
  • 2P Hansen, J G Nagy, et al. Deblurring Images:Matrices, Spec- tra, and Filtering[ M]. Philadelphia, USA: Society for Industrial and Applied Mathematics,2006.
  • 3J Biemond, R L Lagendijk, et al. Iterative method for image de- blurring[ J ]. Proceedings of the 1F.EE, 1990,78(5) : 856 - 883.
  • 4A Tikhonov, V Arsenin. Solution of Ⅲ-Posed Problems[M]. Washington DC: VII. W'mston & Sons, 1977.
  • 5L Rudin, S Osher, E Fatemi. Nonlinear total variation based noise removal algorithm[ J]. Physica D, 1992,60:259 - 268.
  • 6L Rudin, S Osher. Total variation based image restoralion with free local constraints[ J]. IEEE ICIP, 1994,1 : 31 - 35.
  • 7C R Vogel,M E Oman. Fast, robust total variation based recon- struction of noisy, blurred images [ J ]. IEEE Transactions on Image Processing, 1998,7: 813 - 824.
  • 8Y L Wang, J F Yang, et al. A new alternaling minimization al- gorithm for total variation image reconstruction[ J]. SIAM Jour- nal on Image Sciences,2008,1(3) :248 - 272.
  • 9M Afonso, M Figueiredo. Fast image recovery using variable splitting and constrained optimization[ J]. IEEE Transactions on Image Processing,2010,19:2345 - 2356.
  • 10S H than, P E Gill, et al. An augmented lagrangian method for total variation image restoration [ J]. IEEF. Transactions on Image Processing,2010,20(ll) :3097 - 3117.

共引文献22

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部