期刊文献+

基于遮挡系数和区域划分的人群数目估计方法 被引量:2

Crowd Quantity Estimation Based on Occlusion Coefficient and Region Division
下载PDF
导出
摘要 传统的基于像素统计的人数估计方法在行人之间存在遮挡时,无法对人数进行准确的估计。为了减少遮挡引起的误差,提出一种基于遮挡系数和区域划分的人群数目估计方法,利用行人在图像中的高度,前景像素的数量和前景图像连通区域信息,计算遮挡系数,减小了由于人群遮挡引起的人数估计误差,同时采用区域划分,根据行人在图像中的高度分成子区域,减少了摄像机透视效应对人数估计的影响。实验结果表明,相对于传统基于像素统计的人数估计方法,该方法提高了人数估计的准确性。 The traditional crowd counting based on pixel statistics cannot accurately estimate the crowd quantity when there is occlusion between pedestrians.In order to reduce the error caused by the occlusion,a new method is proposed to estimate the crowd quantity based on occlusion coefficient and region division.The occlusion coefficient is calculated by the height of pedestrians in the image,the number of foreground pixels and the connected region information in the foreground image.The method reduces the error of estimating the number of people caused by crowd occlusion.The method adopts region division and divides the image into sub-regions according the height of the pedestrian in the image,which reduces the influence of the camera perspective effect.The experimental results show that the proposed method improves the accuracy of crowd quantity estimation comparing with the traditional method based on pixel statistics.
作者 韩征彬 王宇 孟涛涛 HAN Zhengbin;WANG Yu;MENG Taotao(School of Electronics and Information Engineering,Changchun University of Science and Technology,Changchun 130022)
出处 《长春理工大学学报(自然科学版)》 2019年第4期76-80,共5页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 吉林省教育厅“十三五”科研项目(2016-372)
关键词 像素统计 人数估计 遮挡系数 区域划分 pixel statistics crowd quantity estimation occlusion coefficient region division
  • 相关文献

参考文献5

二级参考文献31

  • 1代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 2Yan J,Lei Z,Yi D.Multi-pedestrian detection in crowdedscenes:a global view [C]// In Computer Vision and PatternRecognition(CVPR),IEEE Conference on.Providence,RI,USA:IEEE Press,2012:3124-3129.
  • 3Rodriguez M,Laptev I,Sivic J.Density-aware persondetection and tracking in crowds [C]// In Computer Vision(ICCV),IEEE International Conference on.Barcelona,Catalonia,Spain:IEEE Press,2011 :2423-2430.
  • 4Rabaud V,Belongie S.Counting crowded moving objects[C]// In Computer Vision and Pattern Recognition(CVPR),IEEE Computer Society Conference on.New York,NY,USA:IEEE Press,2006:705-711.
  • 5Chan B,Vasconcelos N.Bayesian Poisson regression forcrowd counting [C]// In Computer Vision,IEEE 12thInternational Conference on(ICCV).Kyoto,Honshu,Japan:IEEE Presss,2009:545-551.
  • 6Chan B,Liang S,Vasconcelos N.Privacy preserving crowdmonitoring :Counting people without people models ortracking [C]// In Computer Vision and Pattern Recognition(CVPR),IEEE Conference on.Anchorage,AK,USA:IEEE Press,2008:1-7.
  • 7Wu X,Liang G,Lee K.Crowd density estimation usingtexture analysis and learning [C]// In Robotics andBiomimetics,IEEE International Conference on.Kunming,China:IEEE Press,2006 :214-219.
  • 8Rahmalan H,Nixon S,Carter N.On crowd densityestimation for surveillance [C]// In Crime and Security,TheInstitution of Engineering and Technology Conference on.London,Britain:IET Press,2006:540-545.
  • 9Marana N,Lotufo A,Velastin A.Estimating crowd densitywith Minkowski fractal dimension [C]// In Acoustics,Speech,and Signal Processing,IEEE InternationalConference on.Phoenix,AZ,USA:IEEE Press,1999 :3521-3524.
  • 10Davies C,Yin H,Velastin A.Crowd monitoring using imageprocessing [J].Electronics and Communication Engineeringjournal,1995,7(1):37-47.

共引文献38

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部