摘要
在研究面向路径的测试数据自动生成时,目前得到广泛应用的几种方法仍存在不少问题,算法效率普遍低下。为此,提出一种组合优化粒子群算法和蚁群算法的方法:在算法初期,先对粒子群算法作降阶操作,并利用粒子群优化算法生成初步测试结果。然后针对每个粒子的局部搜索过程,引入信息素机制以有效地保证搜索过程的多样性,进而防止搜索过程“早熟”而陷入局部最优。
When studying path-wise automatic generation of test data,it is found that there are still many problems in several widely used methods at present,and the efficiency of the algorithms are generally low.Therefor,a method,which combines optimized particle swarm algorithm(PSO)and ant colony algorithm,is proposed.In the early stage of the proposed method,the reduced order operation is done firstly for PSO,and generates preliminary test results via PSO algorithm.Afterward,for the local search of procedure of each particle,the pheromone mechanism is introduced to effectively guarantee the diversity of the search process and avoid the search process"precocious"and fall into local optimum.
作者
于笳韵
刘传才
YU Jiayun;LIU Chuancai(School of Computer Science and Engineering,Nanjing Unversity of Science and Technology,Nanjing 210094)
出处
《计算机与数字工程》
2019年第8期1951-1955,共5页
Computer & Digital Engineering
关键词
软件测试
粒子群算法
蚁群算法
面向路径
测试数据自动生成
software testing
particle swarm optimization
ant colony algorithm
path-wise
automatic generation of test data