期刊文献+

基于分解卷积神经网络的文本情感分析 被引量:4

Text Sentiment Analysis Based on Decomposed Convolutional Neural Network
下载PDF
导出
摘要 目前基于卷积神经网络的方法已在情感分类任务中取得了良好的效果。传统的卷积神经网络是将卷积层、池化层及全连接层简单堆积起来的。为了提高卷积神经网络的特征提取能力并加快模型训练速度,对传统的卷积神经网络进行改进,提出分解卷积神经网络模型并将其应用于文本情感分析中。实验结果表明,改进后的卷积神经网络取得了比目前主流的卷积神经网络更好的性能。 Recently,the sentiment classification based on convolutional neural networks have achieved good results.Classic convolutional neural networks is simply stacked by convolutional layers,pooling layers and fully connected layers.For improving the ability of feature extraction and speed up the training of convolutional neural networks,this paper improves the traditional convolutional neural network.This paper proposes the factorize convolutional neural network model and applies it to Chinese sentiment analysis.The experimental results show that the factorize convolution neural networks achieves better performance than basic convolutional neural networks.
作者 孟彩霞 董娅娅 MENG Caixia;DONG Yaya(Xi'an University of Posts and Telecommunications,Xi'an 710000)
机构地区 西安邮电大学
出处 《计算机与数字工程》 2019年第8期1970-1973,2101,共5页 Computer & Digital Engineering
基金 陕西省自然科学基金项目(编号:2014JM8303) 陕西省教育厅专项科研计划项目(编号:11JK0988) 西安邮电大学创新基金项目(编号:CXL2015-29)资助
关键词 情感分析 深度学习 特征提取 卷积神经网络 sentiment analysis deep learning feature extraction convolutional neural network
  • 相关文献

参考文献7

二级参考文献51

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2Pang B, Lee L. Seeing stars: Exploiting class relation- ships for sentiment categorization with respect to rating scales[C]//Proceedings o~ the 43rd Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2005: 115-124.
  • 3LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition [C]//Pro- ceedings of the IEEE, 1998, 86(11) : 2278-2324.
  • 4Yih W, He X, Meek C. Semantic parsing for single-rela- tion question answering[C]//Proceedings of ACL 2014.
  • 5Shen Y, He X, Gao J, et al. Learning semantic repre- sentations using convolutional neural networks for web search[C]//Proceedings of the companion publication of the 23rd international conference on World wide web companion. International World Wide Web Confer- ences Steering Committee, 2014: 373-374.
  • 6Blunsom P, Grefenstette E, Kalehbrenner N. A conv- olutional neural network for modelling sentences[C]// Proceedings of the 52nd Annual Meeting of the Associ- ation for Computational Linguistics. 2014.
  • 7Collobert R, Weston J, Bottou L, et al. Natural language processing (almost) from scratch[J].The Journal of Ma- chine Learning Research, 2011, 12: 2493-2537.
  • 8dos Santos C N, Gatti M. Deep convolutional neural networks for sentiment analysis of short texts[C]// Proceedings of the 25th International Conference on Computational Linguistics (COLING). Dublin, Ire-land. 2014.
  • 9Kim Y. Convolutional neural networks for sentence classification[C]//Proceedings of the EMNLP,2014.
  • 10Turney P D. Thumbs up or thumbs down? : semantic orientation applied to Unsupervised classification of reviews[C]//Proceedings of the 40th annual meeting on association for computational linguistics. Associa- tion for Computational Linguistics, 2002: 417-424.

共引文献936

同被引文献40

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部