期刊文献+

基于DCNN的井下行人监测方法研究 被引量:7

Research of Underground Pedestrian Monitoring Method Based on DCNN
下载PDF
导出
摘要 煤矿安全尤其是井下生产环境的安全一直是煤矿行业的重中之重。大部分煤矿企业对于井下工作人员的检测的智能化水平较低,所采用的人员定位系统大都使用射频卡等技术,无法规避替下、捎卡的情况。系统精准度不高,特别是当监控人员疏忽时,存在很大的安全隐患。基于这样的背景,提出了一种基于DCNN的行人检测技术,针对矿井下的视频质量差、背景单调、检测目标单一等特点对原有的YOLO系统进行了改进,实验结果表明,改进后的YOLO系统对井下特殊环境的检测有比较好的检测效果。 Coal mine safety,especially the safety of underground production environment,has always been the top priority of the coal mining industry.Most of the coal mine enterprises have lower level of intelligence for the detection of underground staff.Most of the personnel location systems used radio frequency cards and other technologies,so they can not avoid the situation of replacing and taking the card.System accuracy is not high,especially when the monitoring staff negligence,there are great security risks.Based on this background,this paper presents a DCNN based pedestrian detection technology,according to the mine under the background of monotonous,poor video quality,the characteristics of single target detection has made the improvement to the existing YOLO system,the experimental results show that the detection of special underground environment improved YOLO system has better detection result.
作者 张应团 李涛 郑嘉祺 ZHANG Yingtuan;LI Tao;ZHENG Jiaqi(School of Computer,Xi'an University of Posts and Telecommunications,Xi'an 710061)
出处 《计算机与数字工程》 2019年第8期2027-2032,共6页 Computer & Digital Engineering
关键词 煤矿安全 井下行人检测 DCNN YOLO coal mine safety underground pedestrian detection DCNN YOLO
  • 相关文献

参考文献2

二级参考文献54

  • 1贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3Geronimo D, Lopez A, Sappa A, et al. Survey of pedestrian de- tection for advanced driver assistance systems[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2010, 32 ( 7 ) : 1239- 1258.
  • 4Dollfr P,Wojek C,Schiele B,et al. Pedestrian detection:an e- valuation of the state of the art.IEEE, Trans. on Pattern Analysis and Machine InteUigence,2011,99:1 - 20.
  • 5Aggarwal J, Ryoo M. Human activity analysis: a review[J]. ACM Computing Surveys,2011,43(3),16:1-47.
  • 6Reilly V, Solmaz B, and Shah M. Geometric constraints for hu- man detection in aerial hnagery[ A] .In Proc. ECCV[C] ,2010.
  • 7Andfiluka M, Schnitzspan P, Meyer J, et al. Vision based victim detection from unmanned aerial vehicles [ A ]. In Proc. IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS) [ C]. Talpei, Taiwan, 2010.
  • 8Dollar P, Belongie S, Pemna P. The fastest pedeslrian detector in the west[A]. In Proc. BMVC[C] ,2010.
  • 9Enzweiler M, Gavrila D. Monocular pedestrian detection: sur- vey and experiments[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2009,31 (12) :2179 - 2195.
  • 10Dalai N, Tdggs B. I-listograms of oriented gradients for human detection[ A]. In Proc. 1EEE CVPR[ C], 2005,886 - 893.

共引文献160

同被引文献42

引证文献7

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部