期刊文献+

氮掺杂碳材料的制备及其化学活性位点研究 被引量:3

Preparation of nitrogen-mixed carbon Materials and study on their Chemical activity sites
下载PDF
导出
摘要 为了找出比较优异的非铂电极材料,并分析得出其最佳活性位点,分别从氮掺杂碳和碳载过渡金属氮材料催化剂在阴极催化的两个方向进行了探究。现如今通过X射线光电子能谱分析(XPS)可以检测出吡啶型氮、吡咯型氮和石墨型氮三种主要的氮掺杂活性位点。氮掺杂碳(G-N),氮掺杂碳纳米管(NCNT)以及氮掺杂石墨烯-氮掺杂碳纳米管(N-GO1@CNTs2)三种典型的氮掺杂碳材料进行分析。由此可见碳载过渡金属氮催化剂材料的催化活性位点很有可能主要是氮化金属化合物起作用。 In order to find out the excellent non-platinum electrode material,the best active site is analyzed.The catalysts of N-doped carbon and carbon-borne transition metal nitrogen materials were investigated in two directions of cathodic catalysis.Currently,three main nitrogen doping active sites of pyridine-type nitrogen,pyrrol type nitrogen and graphite type nitrogen can be detected by X-ray photoelectron spectroscopy(XPS).Nitrogen-doped carbon(GN),nitrogen-doped carbon nanotubes(NCNT)and nitrogen-doped graphene-doped carbon nanotubes(NGO1@CNTs2)were analyzed.It can be seen that carbon-borne transition metal nitrogen catalyst.It is likely that the catalytic active sites of the materials are mainly nitrided metal compounds.
作者 张植娟 Zhang Jianjuan(Yunnan Institute of Construction material Product quality Inspection,Kunming,Yunnan 650106)
出处 《云南化工》 CAS 2019年第7期125-126,129,共3页 Yunnan Chemical Technology
关键词 电化学 氮掺杂碳 活性位点 碳载过渡金属 electrochemical nitrogen mixed carbon active site carbon loaded transition metal
  • 相关文献

参考文献1

二级参考文献51

  • 1Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction [J]. Science, 2009, 323(5915): 760-764.
  • 2Xiong W, Du F, Liu Y, et al. 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction [J]. Journal of the American Chemical Society, 2010, 132 (45) : 15839-15841.
  • 3Yang R, Leisch J, Strasser P, et al. Structure of dealloyed Pt- Cu3 thin films and catalytic activity for oxygen reduction [ J ].Chemistry of Materials, 2010, 22(16) : 4712-4720.
  • 4Liu G C, Dahn J R. Fe-N-C oxygen reduction catalysts suppor- ted on vertically aligned carbon nanotubes[ J ]. Applied Catalysis A: General, 2008, 347(1) : 43-49.
  • 5Chen Z, Higgins D, Tao H, et al. Highly active nitrogen-doped carbon nanotubes for oxygen reduction reaction in fuel cell appli- cations[J]. The Journal of Physical Chemistry C, 2009, 113 (49) : 21008-21013.
  • 6Yu D, Nagelli E, Du F, et al. Metal-flee carbon nanomatefials become more active than metal catalysts and last longer[ J]. The Journal of Physical Chemistry Letters, 2010, 1 (14) : 2165- 2173.
  • 7Geim A K, Novoselov K S. The rise of graphene [ J ]. Nature Materials, 2007, 6(3): 183-191.
  • 8Zhang Y, Tan Y W, Stormer H L, et al. Experimental observa- tion of the quantum Hall effect and Berry "s phase in graphene [ J]. Nature, 2005, 438(7065) : 201-204.
  • 9Nomura K, MacDonald A H. Quantum hall ferromagnetism in graphene[ J]. Physical Review Letters, 2006, 96 : 256602.
  • 10Heersche H, Jarilloherrero P, Oostinga J, et al. Induced super- conductivity in graphene [ J ]. Solid State Communications, 2007, 143(1-2) : 72-76.

共引文献17

同被引文献17

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部