期刊文献+

延生型微板块成因机制模拟研究进展 被引量:3

Genetic Mechanism of the Propagation-derived Microplate: A Review
下载PDF
导出
摘要 延生型微板块是指海底扩张或大陆裂解过程中,因裂谷间快速叠接拓展而发生旋转,捕获老的岩石圈并增生新的岩石圈所形成的一类微板块。影响其形成的动力因素众多,根据作用位置可分为浅部动力因素和深部动力因素两类。延生型微板块广泛分布于深海大洋,代表区域为东太平洋海隆处,但因观测困难,生长周期长,数据缺乏,目前对其成因机制的研究主要有物理模拟和数值模拟两类。物理模拟实验根据实验材料和设备的不同可分为冻蜡模型、离心机模型和胶体模型三种。建立的数值模型从最初简单的二维模型发展到条件更为复杂的三维模型,同时开始更多的考虑深部地幔对流的影响。但这些研究主要是探索裂谷拓展行为,仅局限于发现了延生型微板块的形成,并未形成关于延生型微板块形成和演化的研究体系。本文在前人研究的基础上归纳了延生型微板块形成的影响因素,系统梳理了相关的构造物理实验和数值模型研究问题,并结合其他相关研究进一步展望了未来建立延生型微板模型的发展方向。 The propagation-derived microplate refers to a kind of microplate formed by rapid overlapping propagation of rift during seafloor spreading or continental breakup,during which the propagation-derived microplate rotates,captures the old lithosphere,and accelerates the new lithosphere.Many dynamic factors may influence its formation,which can be divided into shallow and deep dynamic factors according to the position of action.Propagation-derived microplate is widely distributed in the deep ocean,and one of the representative areas is the East Pacific Ridge(EPR).However,due to observation difficulty,long growth cycle,lack of data,the current research methods of its genetic mechanism mainly include two types:analog modeling and numerical modeling.According to different experimental materials and equipments,the analogue modeling experiments can be divided into three types:freezing wax model,centrifuge model and colloid model.The established numerical model is developed from the initial simple two-dimensional model to the more complicated three-dimensional model,and more consideration is given to the impact of deep mantle convection.These studies are mainly focused on the propagation behavior of the rift,and did not form a systematic research system for the formation and evolution of the propagation-derived microplate.Based on previous studies,this paper summarizes the influencing factors of propagation-derived microplates,systematically reviews the related physical simulation experiment and numerical model researches,and prospects the future development direction of the propagation-derived microplate model.
作者 甄立冰 李三忠 郭玲莉 王光增 索艳慧 朱俊江 李玺瑶 戴黎明 刘永江 ZHEN Libing;LI Sanzhong;GUO Lingli;WANG Guangzeng;SUO Yanhui;ZHU Junjiang;LI Xiyao;DAI Liming;LIU Yongjiang(Key Lab of Submarine Geosciences and Prospecting Techniques,MOE,Institute for Advanced Ocean Study and College of Marine Geoscience,Ocean University of China,Qingdao 266100,Shandong,China;Laboratory for Marine Geology and Environment,Qingdao National Laboratory for Marine Science and Technology,Qingdao 266237,Shandong,China)
出处 《大地构造与成矿学》 EI CAS CSCD 北大核心 2019年第4期730-744,共15页 Geotectonica et Metallogenia
基金 “全球变化与海气相互作用”专项(GASI-GEOGE-01) 山东省–国家自然科学基金联合基金(U1606401) 国家重点研发项目(2016YFC0601002、2017YFC0601401) 试采海底孔隙压力监测与海洋物理环境研究(2018c-03-186)联合资助
关键词 延生型微板块 成因机制 物理模拟 数值模拟 propagation-derived microplate formation mechanism analogue modeling numerical modeling
  • 相关文献

参考文献2

二级参考文献30

  • 1[10]Carbotte S M, MacDonald K C. Comparison of sea-floor tectonic fabric at intermediate, fast, and super fast spreading ridges - influence of spreading rate, plate motions, and ridge segmentation on fault patterns[J]. Journal of Geophysical Research-Solid Earth, 1994, 99 (B7): 13 609-13 631.
  • 2[11]Shaw W J, Lin J. Models of ocean ridge lithospheric deformation: Dependence on crustal thickness, spreading rate, and segmentation[J]. Journal of Geophysical Research-Solid Earth, 1996, 101 (B8): 17 977-17 993.
  • 3[12]Tong C H, Barton P J, White R S, et al. Influence of enhanced melt supply on upper crustal structure at a mid-ocean ridge discontinuity: A three-dimensional seismic tomographic study of 9 degrees N East Pacific Rise[J]. Journal of Geophysical Research-Solid Earth, 2003, 108 (B10): 2 464.
  • 4[13]Tong C H, Pye J W, Barton P J, et al. Asymmetric melt sills and upper crustal construction beneath overlapping ridge segments: Implications for the development of melt sills and ridge crests[J]. Geology, 2002, 30 (1): 83-86.
  • 5[14]Dick H J B, Lin J, Schouten H. An ultraslow-spreading class of ocean ridge[J]. Nature, 2003, 426 (6 965): 405-412 .
  • 6[15]Shaw P R, Lin J. Causes and consequences of variations in faulting style at the mid-Atlantic ridge[J]. Journal of Geophysical Research-Solid Earth, 1993, 98 (B12): 21 839-21 851.
  • 7[16]Okino K, Curewitz D, Asada M, et al. Preliminary analysis of the Knipovich Ridge segmentation: influence of focused magmatism and ridge obliquity on an ultraslow spreading system[J]. Earth and Planetary Science Letters, 2002, 202 (2): 275-288.
  • 8[17]Michael P J, Langmuir C H, Dick H J B, et al. Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean[J]. Nature, 2003, 423:956-962.
  • 9[18]Briais A, Rabinowicz M. Temporal variations of the segmentation of slow to intermediate spreading mid-ocean ridges - 1: Synoptic observations based on satellite altimetry data[J]. Journal of Geophysical Research-Solid Earth, 2002, 107 (B5): 2 098.
  • 10[19]Goff J A, Cochran J R. The Bauer scarp ridge jump: A complex tectonic sequence revealed in satellite altimetry[J]. Earth and Planetary Science Letters, 1996, 141 (1-4): 21-33.

共引文献39

同被引文献51

引证文献3

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部