期刊文献+

功率比相关子带划分快速独立向量分析 被引量:6

Fast Independent Vector Analysis using Power Ratio Correlation-based Bands Partition
下载PDF
导出
摘要 传统独立向量分析利用频点之间的高阶相关性解决盲源分离频域排序问题,已有研究表明,频点之间的高阶相关性与频点间距有关,越近的频点相关性越强。考虑此特点,本文提出在频域进行无重叠子带划分,采用功率比相关的方法解决子带之间的排序问题;结合更符合语音分布模型的多变量广义高斯分布和多变量t分布,实现了性能更优的功率比相关子带划分快速独立向量分析算法。实验结果表明,本文提出的算法相比传统独立向量分析算法具有更好的语音分离性能。 Traditional independent vector analysis resolves permutation ambiguity using the higher-order dependency among the whole frequency band.Researchers have shown that neighboring frequencies have stronger dependency and using frequency bands partition can improve the separation result.Firstly,in this work,the overlapping cliques independent vector analysis based on natural gradient was extended to a fast algorithm using Newton gradient.Secondly,multivariate generalized Gaussian distribution and multivariate Student t distribution were introduced as source distribution priors in overlapping cliques or overlapping bands partition fast independent vector analysis algorithms because they were more suitable to model the heavy-tailed property of speech signals.Finally,a non-overlapping bands partition scheme was proposed in the fast independent vector analysis with heavy-tailed distributions.Power ratio correlation was introduced to avoid the block permutation ambiguity between frequency bands.Both simulation and real recording experimental results show that the proposed algorithm is better than the traditional fast independent vector analysis and other overlapping bands partition algorithms.
作者 冷艳宏 郑成诗 李晓东 Leng Yanhong;Zheng Chengshi;Li Xiaodong(Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《信号处理》 CSCD 北大核心 2019年第8期1314-1323,共10页 Journal of Signal Processing
基金 国家自然科学基金(61571435,61801468)
关键词 独立向量分析 盲源分离 卷积混合 功率比相关 高阶相关性 independent vector analysis blind source separation convolutive mixture power ratio correlation higher-order dependency
  • 相关文献

参考文献2

二级参考文献17

  • 1Tiemin Mei, Fulian Yin, Jun Wang. Blind Source Separation Based on Cumulants With Time and Frequency Non- Properties [ J] , IEEE Trans. Audio, Specch and Languiage Processing, 2009 ,Vol. 17, No. 6, 1099-1108.
  • 2A. Hyvarinen, J. Karhunen, E. Oja, Independent Component Analysis [ M ]. New York: John Wiley and Sons, 2001.
  • 3Intae Lee, Taesu Kim, Te-won Lee, Fast fixed-point independent vector analysis algorithms for convolutive blind source separation[ J], 2007, Signal Processing 87, 1859- 1871.
  • 4Matsuoka K. , Nakashima S. Minimal distortion principle for blind source separation [ C ]. Proceeding of the 41st SICE Annual (SICE 2002), Washington, 2002,4, 2138- 2143.
  • 5Atsuo Hiroe, Solution of Permutation Problem in Frequency Domain ICA, Using Multivariate Probability Density Functions[C], ICASSP 2006. Toulouse, France, LNCS3889, 601- 608.
  • 6Alireza Masnadi-Shirazi, Bhaskar Rao, Independent Vector Analysis Incorporating Active and Inactive States [ C ], IC- ASSP 2009, Taipei, LNCS5441, 1837-1840.
  • 7Araki S. , Mukai R. , Makino S. Nishikawa, et al. , The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech [ J ], IEEE Trans. Speech and Audio Processing ,2003, Vol. 11,109-116.
  • 8Atsuo Hiroe, Blind Vector Deconvo/ution: Convolutive Mixture Models in Short-Time Fourier Transform Domain[ C ] , ICASSP 2007, Honolulu, U. S. A. , LNCS 4666, 471- 479.
  • 9Greenberg, S. , Kingsbury, The Modulation Spectrogram: in Pursuit of An Invariant Representation of Speech [ C ], ICASSP97, Munich, Germany, Vol. 3, 1647-1650.
  • 10Taesu Kim, Hagai T. Attias, Soo-Young Lee, Te-won Lee, Blind Source Separation Exploiting Higher-Order Frequen- cy Dependencies [ J ] , IEEE Trans. Audio, Speech and Language Processing, 2007, Vol. 15, 70-79.

共引文献6

同被引文献18

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部