摘要
本文主要研究了淹没在对称α稳态噪声下的信号相关检测的最优和次优的预测处理方法。使用量化阵列模型的等价处理函数和对相关运算的高斯近似,通过最大化相关器的输出信噪比,建立了约束泛函优化问题。由于量化阵列的泛函优化问题很难得到解析解,本文将预处理函数离散化,并证明离散后的优化问题是凸二次规划问题,从而可通过凸优化的方法求解。本文提出了一种基于排序方法的自适应门限的软限幅检测器,相比现有的检测器,仅仅需要估计噪声参数α。仿真结果表明,提出的量化阵列系统等价的预处理函数逼近最大似然检测器,提出的软限幅检测器达到了近似最优的性能,有利于实时处理α稳态信号。
In this paper,the optimal and suboptimal nonlinear processing for correlation-based signal detection is addressed in symmetric alpha-stable noise.By the equivalent preprocessing function of quantizer-array and Gaussian approximation of the correlator’s output,a constrained functional optimization problem is established by maximizing the correlator output signal-to-noise ratio.However,it is hard to get the analytical solution of this problem.We further apply finite discretization to this functional optimization problem,and prove that the approximation problem is a convex quadratic programming problem.Therefore,the resulting problem can be solved by convex optimization.We propose a novel adaptive threshold for the soft limiter detector based on sorting,which only need to estimate alpha-stable noise parameterαwhen comparing with other detectors.The proposed equivalent preprocessing function of quantizer-array approximates the maximum likelihood detector.Simulation results show that the proposed soft limiter achieves near-optimal performance,benefitting the real-time processing of symmetric alpha-stable signal.
作者
陆炫宇
许凯嘉
张国勇
王军
Lu Xuanyu;Xu Kaijia;Zhang Guoyong;Wang Jun(Sichuan Jiuzhou Electric Group Co.,Ltd.,Mianyang,Sichuan 621000,China;National Key Laboratory of Science and Technology on Communications,University of Electronic Science and Technology of China,Chengdu,Sichuan 611731,China)
出处
《信号处理》
CSCD
北大核心
2019年第8期1425-1431,共7页
Journal of Signal Processing
基金
国家预研项目(9020302)
通信抗干扰技术国家级重点实验室基金项目
通信抗干扰技术国家级重点实验室基础科研创新基金项目
国家自然科学基金(61471099)
关键词
随机共振
量化阵列
非高斯
预处理
凸优化
Α稳定分布
软限幅检测器
stochastic resonance
quantizer arrays
non-Gaussian
preprocessing
convex optimization
alpha-stable distribution
soft limiter detector