期刊文献+

二项分布近似计算的误差量化分析 被引量:2

Quantitative Analysis of Approximate Calculation Errors of Binomial Distribution
下载PDF
导出
摘要 试验次数较大时,二项分布可用正态分布或泊松分布作近似计算.对于系统可靠度问题,量化分析了随机变量上下限、整数端点对近似计算的累计误差影响,发现用正态分布作近似时累计误差总为负数且在期望附近达到最大,对整数边界点进行扩张修正可提高估算精度;对不同参数组合的误差量化分析表明,当期望小于10时用泊松分布近似计算效果较好,当期望超过10后用正态分布作近似效果较好. When the number of tests is large,the binomial distribution can be approximated by normal distribution or Poisson distribution.For the system reliability problem,this paper quantifies the cumulative error of the approximation that is influenced by the upper and lower bounds of the random variable and the endpoint.It is found that the cumulative error is always negative when approximated by normal distribution and reaches the maximum near expectation.Expansion correction of integer boundary points can improve estimation accuracy.Quantitative analysis of errors for different parameter combinations shows that Poisson distribution is suitable for the case that the expectation is less than 10,and the approximation effect of normal distribution is better when the expectation exceeds 10.
作者 杜鸿飞 陈绍刚 DU Hong-fei;CHEN Shao-gang(School of Mathematical Sciences,University of Electronic Sciences and Technology of China(UESTC),Chengdu 611731,China)
出处 《大学数学》 2019年第4期108-114,共7页 College Mathematics
基金 校级教改项目(Y03094023701019203) 四川省软科学项目:互联网环境下招标拍卖机制设计和最优决策研究(2019JDR0014) 四川省社会科学研究“十三五”规划2017年度课题《支持向量机在高校教师教学评价中的应用》(SC17B033)
关键词 二项分布 棣莫弗-拉普拉斯中心极限定理 泊松定理 误差量化分析 binomial distribution de Moivre-Laplace central limit theorem Poisson theorem quantitative error analysis
  • 相关文献

参考文献3

二级参考文献3

共引文献4

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部