期刊文献+

基于梯度场的紧致差分最小二乘面形重建算法 被引量:1

Least square surface reconstruction method with compact finite difference scheme from measured gradient field
下载PDF
导出
摘要 为快速准确根据测得的梯度场重建表面面形,针对基于最小二乘全局积分的重建技术,采用紧致差分算子建立全局最优化的代价函数以提高重建精度,将代价函数表示为Sylvester方程,利用Hessenberg-Schur算法求解,将常用最小二乘全局积分技术的空间和时间复杂度分别从O (N2)和O (N3)降低到O(N)和O(N3/2)。实验结果表明:采用四阶精度的紧致差分算子时,文中算法重建精度比高阶截断误差最小二乘积分法(HFLI)和全局最小二乘法(GLS)提高了一个数量级,采用六阶精度的紧致差分算子时重建精度比基于样条的最小二乘积分法(SLI)提高了一个数量级;鲁棒性优于GLS,弱于HFLI和SLI;重建速度显著优于HFLI和SLI,略优于GLS。 In order to reconstruct the 3D surface from gradient fields quickly and accurately, a new fast and accurate least squares integration algorithm was proposed. Compact finite difference scheme was introduced into optimization equation for better accuracy. Then the objective function was represented as a Sylvester function. With Hessenberg-Schur algorithm, the space and time complexity were reduced from O(N2) and O(N3) to O(N) and O(N3/2), respectively. The experiment result showed that when the 4 thorder compact scheme is used, the accuracy of the new method is improved by one order higher than Higher-order Finite-difference-based Least-squares Integration(HFLI) and Global Least-Squares(GLS).While with 6 th-order compact scheme, the accuracy is improved by one order higher than Spline-based Least-squares Integration(SLI). The robustness of the proposed method is weaker than that of HFLI and SLI, but better than GLS. The reconstruction speed was obviously faster than that of HFLI and SLI.
作者 巫玲 武从海 陈念年 范勇 Wu Ling;Wu Conghai;Chen Niannian;Fan Yong(School of Computer Science and Technology,Southwest University of Science and Technology,Mianyang 621010,China;State Key Laboratory of Aerodynamics,China Aerodynamics Research and Development Center,Mianyang 621000,China)
出处 《红外与激光工程》 EI CSCD 北大核心 2019年第8期275-280,共6页 Infrared and Laser Engineering
基金 四川省教育厅科技成果转化重大培育项目(14zd1102) 西南科技大学龙山学术人才科研支持计划(17LZX425)
关键词 三维面形重建 梯度场 最小二乘全局积分 紧致差分 SYLVESTER方程 3D surface reconstruction gradient field least squares integration compact finite difference scheme Sylvester function
  • 相关文献

参考文献4

二级参考文献26

  • 1常山,曹益平,陈永权.五棱镜的运动误差对波前测量的影响[J].光学仪器,2005,27(3):12-16. 被引量:17
  • 2林辉轮,王春鸿,姜文汉.低信噪比下扩展目标质心的高精度计算方法[J].光电工程,2005,32(8):9-12. 被引量:3
  • 3Neal D R, Copland J, Neal sensor precision and accuracy 160. D. Shack-Hartmann wavefront [C]IISPIE, 2002, 4779: 148-.
  • 4Oliveira 0 G, Lima Monteiro D W, Costa R F O. Optimizedmicrolens-array geometry for Hartmann-Shack wavefront sensor [J]. Optics and Lasers in Engineering, 2014, 55: 155-161.
  • 5Meimon S, Fusco T, Michau V, et al. Sensing more modes with fewer sub-apertures: the LIFTed Shack-Hartmann wavefront sensor[J]. Opt/es Letters, 2014, 39(10): 2835-2837.
  • 6SHATOKHINA L, OBEREDER A. Preprocessed cumulative reconstructor with domain decomposition: a fast wavefront reconstruction method for pyramid wavefront sensor [J]. Applied Optics, 2013, 52(12): 2640-2652.
  • 7SERGEEV P A, GOGOLEV Y A. Collimator equipment of the large optical test facility vertical for testing space telescopes [J]. SPIE, 1995,2478:348-358.
  • 8SHELDON B H, ANDREW C. Updated status and capabilities for the LOTIS 6.5 meter collimator [J]. SPIE, 2008,7106:710618.
  • 9JAMES H B, ZHAO CH Y. Applications of subaperture stitching interferometry for very large mirrors [J]. SPIE, 2013,8450:84500X.
  • 10TONY L W, THOMAS R S. Optimizing the cryogenic test configuration for the James Webb Space Telescope [J]. SPIE,2006,6271:62710B.

共引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部