期刊文献+

基于Bi-LSTM和Max Pooling的答案句抽取技术 被引量:6

Answer Sentence Extraction Technology Based on Bi-LSTM and Max Pooling
下载PDF
导出
摘要 针对传统问答系统答案抽取方式对答案片段的分词和上下文语义理解准确性的依赖严重,抽取过程耗费大量的人力和时间的问题,提出采用分步抽取答案的方法,先从答案片段中抽取包含答案的句子,再从提取的答案句中进行最终答案的抽取方式。在答案句抽取过程中使用Bi-LSTM(Bi-directional Long Short-Term Memory)和Max Pooling结合的方法构建答案句抽取模型。实验结果表明,在答案句的抽取中,该模型的MRR(Mean Average Precision)指数接近0. 75。 In automatic question and answering system,traditional way of the answer extraction depends on participle of answer fragment and the accuracy of semantic comprehension from the context,which consumes manpower and time during the extraction process. To solve the above problems,the approach of step answer extraction is adopted where the final answer extraction is conducted through the extracted answers from the sentences. The model of answer sentence extraction is built in combination of Bi-LSTM(Bi-directional Long Short-Term Memory) and Max Pooling during the extraction process. The experimental results show that the MRR(Mean Average Precision) index of this model is close to 0. 75 in the extraction of the answer sentence.
作者 王策 万福成 于洪志 马宁 吴甜甜 杨方韬 WANG Ce;WAN Fucheng;YU Hongzhi;MA Ning;WU Tiantian;YANG Fangtao(Key Laboratory of China's Ethnic Languages and Information Technology of Ministry of Education,Northwest Minzu University,Lanzhou 730030,China)
出处 《吉林大学学报(信息科学版)》 CAS 2019年第4期390-398,共9页 Journal of Jilin University(Information Science Edition)
基金 国家科学基金青年资助项目(61602387)
关键词 中文问答系统 答案句抽取 Bi-LSTM算法 Chinese question answering system answer sentence extraction bi-directional long short-term memory(Bi-LSTM)
  • 相关文献

参考文献3

二级参考文献21

  • 1周强.汉语基本块描述体系[J].中文信息学报,2007,21(3):21-27. 被引量:25
  • 2E. Charniak. Toward a Model of Children's Story Comprehension[D]. Massachusetts Institute of Technology, 1972.
  • 3Lynette Hirschman, Marc Light, Eric Breck, and John D. Burger. Deep Read: a reading comprehension system[C]//Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics. College Park, Maryland: 1999:325-332.
  • 4Eugene Charniak, Yasemin Ahun, Rodrigo de Salvo Braz. et al. Reading comprehension programs in a statistical language-processing class[C]//Preceedings of the ANLP/NAACL 2000 Workshop on Reading Com prehension Tests as Evaluation for Computer-Based Language Understanding Systems, Seattle, Washington: 2000:1-5.
  • 5Ellen Riloff and Michael Thelen. A Rule based Ques tion Answering System for Reading Comprehension Test[C]//ANLP/NAACL-2000 Workshop on Reading Comprehension Tests as Evaluation for Computer Based Language Understanding Systems. Seattle, Washington, 2000, 13-19.
  • 6Hwee Tou Ng, Leong Hwee Teo, Jennifer I.ai Pheng Kwan. A Machine Learning Approach to Answering Questions for Reading Comprehension Tests[C]//Pro ceedings of the 2000 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora. 2000.
  • 7Kui Xu, Helen Meng and Fuliang Weng. A Maximum Entropy Framework that IntegratesWord Dependencies and Grammatical Relations for Reading Comprehension [C]//Proceedings of the Human Language Technology Conference of the North American Chapter of the ACL. 2006 : 185-188.
  • 8王凯华,李济洪,张国华,王瑞波.基于最大熵模型的中文阅读理解问答系统技术研究[C]..CNCCL-2007:内容计算的研究与应用前沿.北京:清华大学出版社,2007.643-648.
  • 9Adam L. Berger, Stephen A. Della Pietra, Vincent J. Delia Pietra. A maximum entropy approach to natural language processing [J]. Computational Linguistics, Philadelphia, USA, 1996 : 89-71.
  • 10张娜,李济洪.基于语义标注的中文阅读理解语料库的建设[C]//CNCCL-2007内容计算的研究与应用前沿.北京:清华大学出版社,2007:338-343.

共引文献17

同被引文献48

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部