期刊文献+

一款基于码型检测SS-LMS算法的自适应均衡接收器 被引量:4

A Receiver with Self-adaptive Equalizer Controlled by Pattern Detection Based SS-LMS Algorithm
下载PDF
导出
摘要 本文提出了一种新型的基于码型检测SS-LMS算法的自适应均衡接收器,所采用的7抽头判决反馈均衡器(DFE)和连续时间线性均衡器(CTLE)组合设计,可以有效消除信道传输中码间干扰的短距离后标分量,以及长拖尾后标分量和前标分量;同时,改进设计的基于码型检测SS-LMS算法,使均衡器可以动态补偿多种信道损耗,具有更快速稳定的收敛特性.本文所设计实现的自适应均衡接收器,采用TSMC28nmCMOS工艺完成了芯片的设计和流片,流片的测试结果表明,在12.5Gb/s的传输速率下,接收器可以最大补偿-25dB的半波特率通道衰减,均衡器系数在接收2×105 UI数据内收敛,收敛后接收误码率(BER)可以低于10^-12. This paper presents a novel self-adaptive equalizer controlled by pattern-detection-based sign-sign Least Mean Square(SS-LMS)algorithm.With a combinational use of a 7-tap Decision Feedback Equalizer(DFE)and a Continuous-Time Linear Equalizer(CTLE),the new self-adaptive equalizer can effectively eliminate the short length post-cursor inter-symbol interference(ISI),the long-tail post-cursor and pre-cursor ISI respectively.Meantime,a new pattern-detection-based SS-LMS algorithm is raised to dynamically adjust the equalizer s coefficients to self-adaptively compensate different channel loss,and at the same time,to significantly improve the stability and convergence of the whole equalizer.Finally,by use of this new self-adaptive equalizer,a high-speed serial receiver is designed and fabricated in TSMC 28 nm CMOS process.Test result shows that,with the half-baud channel loss up to 25 dB,the new high-speed receiver obtains its receiving rate of 12.5 Gb/s with the BER less than 10^-12.And all the coefficients of the equalizer can converge in 2×10^ 5 UI received data.
作者 冯琪琛 俞剑 徐烈伟 陈更生 FENG Qichen;YU Jian;XU Liewei;CHEN Gengsheng(State Key Laboratory of ASIC&System,Fudan University,Shanghai 201203,China;Shanghai Fudan Microelectronics Group Co.,Ltd.Shanghai 200433,China)
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2019年第4期441-453,共13页 Journal of Fudan University:Natural Science
关键词 符号最小均方根算法 连续时间线性均衡器 判决反馈均衡器 接收器 sign-sign least mean square continuous-time linear equalizer decision feedback equalizer receiver
  • 相关文献

参考文献2

二级参考文献14

  • 1Dorsey J, Searles S, Ciraula M, et al. An integrated quad-core Opteron^TM processor. ISSCC Dig Tech Papers, 2007:102.
  • 2Konstadinidis G, Rashid M, Rashid M, et al. Implementation of a third-generation 16-core 32 thread chip-multithreading SPARC^TM processor. ISSCC Dig Tech Papers, 2008:84.
  • 3Stackhouse B, Cherkauer B, Gowan M, et al. A 65nm 2-billiontransistor quad-core Itanium^TM processor. ISSCC Dig Tech Pa- pers, 2008:92.
  • 4Proakis J G. Digital communications. 4th ed. McGraw-Hill, 2001.
  • 5Dally W J, Poulton J W. Digital systems engineering. Cambridge University Press, 1998.
  • 6Rau M, Oberst T, Lares R, et al. Clock/data recovery PLL using half-frequency clock. IEEE J Solid-State Circuits, 1997, 32(7): 1156.
  • 7Cao J, Green M, Momtaz A, et al. OC-192 transmitter and receiver in standard 0.18-μm CMOS. IEEE J Solid-State Circuits, 2002, 37(12): 1768.
  • 8Sidiropoulos S, Horowitz M A. A semidigital dual delay-locked loop. IEEE J Solid-State Circuits, 1997, 32(11): 1683.
  • 9Takauchi H, Tamura H, Matsubara S. A CMOS multichannel 10-Gb/s transceiver. IEEE J Solid-State Circuits, 2003, 38(12): 2094.
  • 10Yang C K K, Horowitz M A. A 0.8-μm CMOS 2.5 Gb/s oversampling receiver and transmitter for serial links. IEEE J Solid- State Circuits, 1996, 31(12): 2015.

共引文献6

同被引文献11

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部