期刊文献+

基于最短依存路径与神经网络的关系抽取 被引量:5

Relation extraction based on shortest dependency path and neural network
下载PDF
导出
摘要 对命名实体之间的语义关系抽取进行研究。分别使用Word2vec和GloVe对句子最短依存路径进行词向量表示,作为卷积神经网络和双向长短期记忆网络的输入,通过网络自动学习特征,通过拼接的方式将两种特征融合,通过softmax分类器得出所属关系的类型。采用SemEval-2010 Task 8数据集,实验结果表明,使用多种词向量表示最短依存路径和通过拼接的方式融合卷积神经网络与长短期记忆网络的特征能显著提高关系抽取的效果。 Semantic relation extraction between named entities was researched.Word2vec and GloVe were respectively used to represent sentence’s shortest dependency path,which were taken as the inputs of convolutional neural network and bi-directional long-short term memory network,then features were automatically learned through the network and these two kinds features were concatenated.The type of relation was concluded through softmax classifier.SemEval-2010 Task 8 dataset was used.Experimental results show that the results of relation extraction are significantly improved by using shortest dependency path represented by multiple word embedding and concatenating method of convolutional neural network and long-short term memory network’s feature.
作者 温政 段利国 李爱萍 WEN Zheng;DUAN Li-guo;LI Ai-ping(College of Information and Computer,Taiyuan University of Technology,Taiyuan 030024,China;State Key Laboratory of Software Engineering,Wuhan University,Wuhan 430072,China)
出处 《计算机工程与设计》 北大核心 2019年第9期2672-2676,2696,共6页 Computer Engineering and Design
基金 山西省自然科学基金项目(2013011015-2) 武汉大学软件工程国家重点实验室开放课题基金项目(SKLSE2012-09-30)
关键词 关系抽取 最短依存路径 双通道 卷积神经网络 双向长短期记忆网络 relation extraction shortest dependency path bi-channel convolutional neural network bi-directional long-short term memory network
  • 相关文献

参考文献4

二级参考文献139

  • 1车万翔,刘挺,李生.实体关系自动抽取[J].中文信息学报,2005,19(2):1-6. 被引量:116
  • 2何婷婷,徐超,李晶,赵君喆.基于种子自扩展的命名实体关系抽取方法[J].计算机工程,2006,32(21):183-184. 被引量:25
  • 3董静,孙乐,冯元勇,黄瑞红.中文实体关系抽取中的特征选择研究[J].中文信息学报,2007,21(4):80-85. 被引量:55
  • 4刘克彬,李芳,刘磊,韩颖.基于核函数中文关系自动抽取系统的实现[J].计算机研究与发展,2007,44(8):1406-1411. 被引量:59
  • 5Message Understanding Conference [ EB/OL ]. [ 2013 - 06 - 24 ]. http ://en. wikipedia, org/wiki/Message _ Understanding _ Confer-.
  • 6MUC - 7 Information Extraction Task Definition [ EB/OL ]. [ 2013 - 06 - 24 ]. http ://www. itl. nist. gov/iaui/894.02/related_pro- jects/muc/proceedings/ie_task, html.
  • 7Automatic Content Extraction ( ACE ) Evaluation [ EB/OL ]. [ 2013 -06 -24]. http://www, itl. nist. gov/iad/mig//tests/ace/.
  • 8The ACE 2007 ( ACE2007 ) Evaluation Plan [ EB/OL ]. [ 2013 - 06 -24 ]. http://www, itl. nist. gov/iad/mig//tests/aee/aee07/ doe/ace07 - evalplan, vl. 3a. pdf.
  • 9Knowledge Base Population (KBP) 2013 [ EB/OL]. [2013 - 06 - 24]. http://www, nist. gov/tac/2013/KBP/.
  • 10Mintz M, Bills S, Snow R, et al. Distant Supervision for Relation Extraction Without Labeled Data[ C ]. In: Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th Inter- national Joint Conference on Natural Language Processing of the AFNLP. Association for Computational Linguistics, 2009:1003 - 1011.

共引文献661

同被引文献12

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部