期刊文献+

基于BP神经网络的终端区拥挤等级预测 被引量:3

Terminal Area Congestion Level Prediction Based on BP Neural Network
下载PDF
导出
摘要 为了准确和有效地预测机场终端区拥挤等级,进而提高终端区空中交通运行效率,首先,从拥挤原因和拥挤后果2类指标入手,提取出4个终端区拥挤指标,并将其量化;然后,建立了基于反向传播(BP)神经网络的终端区拥挤等级预测模型;最后,以国内某终端管制区为例进行验证,结果表明,该预测方法对终端区拥挤等级预测的准确率达73.3%,并具有实用性。 In order to accurately and effectively predict the airport terminalarea congestion and improve the air traffic operation efficiency of terminal area,four terminal area congestion indicators are extracted and quantified from the two indexes of congestion causes and consequences.Then,a prediction model of terminal congestion level based on the back propagation(BP)neural network is established.Finally,a domestic terminal control area is taken as an example to verify,and the results show that the accuracy of the prediction method for the congestion level of the terminal area is up to 73.3%,and the prediction method is practical.
作者 阮昌 李印凤 高旗 RUAN Chang;LI Yinfeng;GAO Qi(China Civil Aviation Air Traffic Management Bureau in North China,Beijing 100621,China;College of Civil and Architectural Engineering,North China University of Science and Technology,Tangshan 063210,Hebei,China)
出处 《指挥信息系统与技术》 2019年第4期83-86,共4页 Command Information System and Technology
基金 江苏省自然科学基金(BK20170157)资助项目
关键词 BP神经网络 终端区 拥挤等级预测 back propagation(BP)neural network terminal area congestion grade prediction
  • 相关文献

参考文献10

二级参考文献91

共引文献307

同被引文献14

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部