期刊文献+

集成基于EP的分类器用于数据流入侵检测

Integrating EP-based Classifiers for Intrusion Detection On Data Streams
下载PDF
导出
摘要 本文提出了一种集成基于EP的分类器用于数据流入侵检测的模型EEPCDS(Ensemble of EP-based Classifiers on Data Stream)。该模型选择滑动窗口中的多个时间段数据来生成多个EP分类器,并且通过加权投票表决对未知样本进行分类,检测入侵行为。EEPCDS能适应数据流环境下的概念漂移,并且能实现较好的目标类召回率和精度的平衡,以及较高的分类准确率。 This paper proposed a new approach,called EEPCDS(Ensemble of EP-based Classifiers on Data Stream),for intrusion detection on Data Stream.EEPCDS constructs fixed number of EP-based Classifiers from different chunks,and integrated these classifiers for intrusion detection.EEPCDS not only has a high accuracy,but also achieves a good balance of recall and precision.
作者 陈猛 CHEN Meng(Information Management Department,The CPC Henan Provincial Party Committee Party School,Zhengzhou Henan 450000)
出处 《河南科技》 2019年第19期11-12,共2页 Henan Science and Technology
关键词 入侵检测 EP 数据流 intrusion detection EP data stream
  • 相关文献

参考文献1

二级参考文献10

  • 1Blake C, Merz C. UCI repository of machine learning databases.1998 [http://www. ics. uci. edu/- mlearn/ MLRepository.html]. Irvine,CA: University of California,Department of Information and Computer Science
  • 2Dong G,Li J. Efficient mining of emerging patterns: Discovering trends and differences. In: Proc. of KDD′99, San Diego, USA,Sept. 1999.15-18
  • 3Dong G,Zhang X,Wong L,Li J. CAEP: Classification by Aggregating emerging patterns. In:Proc. of the 2nd Int′l Conf. On Discovery Science (DS′99) ,Tokyo,Japan,Dec. 1999.30-42
  • 4Fan H,Ramamohanarao K. Bayesian Approach to use Emerging Patterns for Classification. In:Proc of 14th Australasian Database Conf. Feb. 2003. 39-48
  • 5Han J,Pei J,Yin Y. Mining frequent patterns without candidate generation. In:Proc. of the 2000 ACM-SIGMOD Intl. Conf. on Management of Data, May 2000. 1-2
  • 6Li J,Dong G, Ramamohanarao K. JEP-Classifier: Classification by Aggregating Jumping Emerging Patters. Knowledge and Information Systems, 2001,3(2): 131-145
  • 7Li J,Dong G. Ramamohanarao K. Making Use of the Most Expressive Jumping Emerging Patterns for Classification. In:Pro. of 2000 Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD′00) ,2000. 220-223
  • 8Li W,Han J,Pei J. CMAR: Accurate and efficient classification based on multiple class-association rules. In:ICDM′01,San Jose,CA,Nov. 2001. 369-376
  • 9Lin B, Hsu W, Ma Y. Integrating classification and association rule mining. In:KDD′98,New York,NY,Aug. 1998. 80-86
  • 10Zheng Z, Webb G I. Lazy learning of Bayesian rules. Machine Learing, 41:53-84

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部