期刊文献+

基于离散Shearlet类别可分性测度的人脸表情识别方法 被引量:2

Facial expression recognition based on separability assessment of discrete Shearlet transform
原文传递
导出
摘要 针对优化表情特征稀疏表达问题,提出一种基于离散Shearlet类别可分性测度的人脸表情识别方法。首先,对预处理后的图像进行离散Shearlet变换,得到变换系数。然后,根据测度函数评估每个方向与尺度系数的可分性指标,在最佳可分性方向与尺度上,融合低频和高频系数作为特征。最后,引入支持向量机进行分类。结果证明:本文方法选取具有最佳可分性的尺度和方向系数作为特征,抛弃了无用信息,降低了特征维度与计算量,使系统更高效。 To solve the problem of sparse expression of facial expression features,a facial expression recognition method based on separability assessment of the Discrete Shearlet Transform(DST) is proposed. DST is a relatively new image multiscale geometric analysis method. First,the DST transform is applied to the preprocessed facial expression images,and the transformation coefficients are obtained.Then,according to the separability evaluation function,the separability index in each direction and the scale coefficients are evaluated, and the low and high-frequency coefficients are fused on the best separability direction and scale. Finally,Support Vector Machine(SVM)is introduced to classify the facial expression. The experimental results show that the proposed method can select the best separability scale and direction coefficient as the feature,abandon the useless information,reduce the feature dimension and computation cost,therefore,the system is more efficient.
作者 卢洋 王世刚 赵文婷 赵岩 LU Yang;WANG Shi-gang;ZHAO Wen-ting;ZHAO Yan(Colloge of Communication Engineering,Jilin University,Changchun 130022,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2019年第5期1715-1725,共11页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金重点项目(61631009) 国家“十三五”重点研发计划项目(2017YFB0404800)
关键词 信息处理技术 离散可分离剪切波变换 人脸表情识别 可分性评价 多尺度几何分析 支持向量机 information processing technology discrete separable shearlet transform facial expression recognition separability assessment multiscale geometric analysis support vector machine
  • 相关文献

参考文献5

二级参考文献37

  • 1刘杰,金弟,杜惠君,刘大有.一种新的混合特征选择方法RRK[J].吉林大学学报(工学版),2009,39(2):419-423. 被引量:7
  • 2刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 3Zhan Yongzhao, Ye Jingfu, Niu Dejiao. Facial Expression Recog- nition Based on Gabor Wavelet Transformation and Elastic Templates Matching[J]. International Journal of Image and Graphics, 2006, 6(1): 125-138.
  • 4Wright J, Ma Yi, Mairal J, et al. Sparse Representation for Computer Vision and Pattern Recognition[J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044.
  • 5Baraniuk R, Candes E, Elad M. Applications of Sparse Representation and Compressive Sensing[J]. Proceedings of the IEEE, 2010, 98(6): 906-909.
  • 6Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 7Wagner A, Wright J, Ganesh A, et al. Towards a Practical Face Recognition System: Robust Registration and Illumination by Sparse Representation[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE Press, 2009: 597-604.
  • 8Donoho D L, Elad M, Temlyakov V N. Stable Recovery of Sparse Overcomplete Representations in the Presence of Noise[J]. IEEE Transactions on Information Theory, 2006, 52(1): 6-18.
  • 9Li Yuanqing, Amari S. Two Conditions for Equivalence of 0-Norm Solution and 1-Norm Solution in Sparse Representation[J]. IEEE Transactions on Neural Networks, 2010, 21(7): 1189-1196.
  • 10Kotsia I, Pitas I. Facial Expression Recognition in Image Sequences Using Geometric Deformation Features and Support Vector Machines[J]. IEEE Transactions on Image Processing, 2007, 16(1): 172-187.

共引文献72

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部