期刊文献+

无能级稳定判据的多尺度量子谐振子算法

Multi-scale quantum harmonic oscillator algorithm without energy level stability criterion
下载PDF
导出
摘要 多尺度量子谐振子算法是一种基于量子理论构建的智能优化算法。能级稳定过程是该算法的核心迭代过程之一,能级稳定判据是判断算法是否达到暂稳态的条件。通过对算法物理模型的分析,可知算法在初始采样阶段每一次迭代操作都是能级下降的过程,所以取消能级稳定判据,也可实现算法从高能态过渡到暂稳态直至基态的进化过程。无能级稳定判据的算法在6个标准测试函数上的结果显示其在求解精度、成功率、迭代次数上均表现出了优异的性能,算法的波函数显示无能级稳定判据的算法仍然可以完成从高能态到基态的收敛,且算法在结构上更加简洁,易用性更高,实现难度更低。无能级稳定判据的多尺度量子谐振子算法能够以更加简洁且有效的方式进行应用。 Multi-scale quantum harmonic oscillator algorithm is an intelligent optimization algorithm based on quantum theory.The energy level stabilization process is one of the core iterative processes of the algorithm,and the energy level stability criterion is the condition for judging whether the algorithm reaches metastable state.Through the analysis of the physical model of the algorithm,it was considered that each iteration of the algorithm in the initial sampling stage is a process of energy level descent,so that the algorithm without energy level stability criterion was also able to realize the evolution from high energy state to metastable state until ground state.The results of the algorithm without energy level stability criterion on six standard test functions show the excellent performance of the algorithm in terms of solution accuracy,success rate and number of iterations.The wave function of the algorithm shows that the algorithm without energy level stability criterion can still converge from the high-energy state to the ground state,and is simpler in structure,easier to use and less difficult to implement.Multi-scale quantum oscillator algorithm without energy level stability criterion can be applied in a more concise and efficient way.
作者 王德志 王鹏 WANG Dezhi;WANG Peng(School of Computer Science and Technology,Southwest Minzu University,Chengdu Sichuan 610041,China)
出处 《计算机应用》 CSCD 北大核心 2019年第9期2641-2645,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(60702075,71673032) 中央高校基本科研业务专项(2019NYB22)~~
关键词 多尺度量子谐振子算法 优化算法 能级稳定 量子模型 成功率 波函数 multi-scale quantum harmonic oscillator algorithm optimization algorithm energy level stability quantum model success rate wave function
  • 相关文献

参考文献4

二级参考文献36

  • 1冯斌,须文波.基于粒子群算法的量子谐振子模型[J].计算机工程,2006,32(20):18-21. 被引量:11
  • 2Metropolis N,Rosenbluth A W,Rosenbluth M N,et al.Equation of state calculations by fast computing machines[J].The Journal of Chemical Physics,1953,21(6):1087-1092.
  • 3Kirkpatrick S,Gelatt C D,Vecchi M P.Optimization by simmulated annealing[J].Science,1983,220(4598):671-680.
  • 4Kirkpatrick S,Toulouse G.Configuration space analysis of travelling salesman problems[J].Journal de Physique,1985,46(8):1277-1292.
  • 5Munakata T,Nakamura Y.Temperature control for simulated annealing[J].Physical Review E,2001,64(4):046127.
  • 6Ghosh A,Mukherjee S.Quantum annealing and computation:a brief documentary note[J].Science and Culture,2013,79(1):485-500.
  • 7Finnila A,Gomez M,Sebenik C,et al.Quantum annealing:a new method for minimizing multidimensional functions[J].Chemical Physics Letters,1994,219(5):343-348.
  • 8Stella L,Santoro G E,Tosatti E.Optimization by quantum annealing:lessons from simple cases[J].Physical Review B,2005,72(1):014303.
  • 9Brooke J,Bitko D,Aeppli G.Quantum annealing of a disordered magnet[J].Science,1999,284(5415):779-781.
  • 10Martoňák R,Santoro G E,Tosatti E.Quantum annealing of the traveling-salesman problem[J].Physical Review E,2004,70(5):057701.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部