期刊文献+

先验信息约束NMF的高光谱解混

Hyperspectral unmixing of nonnegative matrix factorization with prior information
下载PDF
导出
摘要 针对高光谱图像中含有大量混合像元,且大多数解混算法未能利用真实地物信息的问题,提出了一种利用先验信息约束的非负矩阵分解方法对高光谱进行解混。首先利用顶点成分分析法和全约束最小二乘法分别对端元矩阵和丰度矩阵进行初始化,然后利用本文算法对高光谱数据进行解混,最后对估计端元和估计丰度进行评价分析。实验显示,利用本文提出的方法对数据解混的结果优于其他约束的非负矩阵分解算法得到的结果,在求解过程中有很好的抗噪性能。 In view of the problem that hyperspectral images contain a large number of mixed pixels,and most of the de?mixing algorithms fail to utilize real object information,this paper proposes a non?negative matrix factorization method using a priori information constraint.Firstly,the end?element matrix and the abundance matrix were initial?ized respectively by the vertex component analysis method and the full constrained least squares method.Then the hyperspectral data was de?mixed by the algorithm,and finally the estimated end?member and estimated abundance were evaluated.Experiments show that the results obtained by the method proposed in this paper are better than those obtained by non?negative matrix decomposition algorithms of other constraints,and have good anti?noise per?formance in the solution process.
作者 韩月 康维新 李慧 HAN Yue;KANG Weixin;LI Hui(College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China)
出处 《应用科技》 CAS 2019年第4期77-81,共5页 Applied Science and Technology
关键词 高光谱图像 非负矩阵分解 先验信息 数据解混 端元 丰度 混合像元 hyperspectral image non-negative matrix factorization prior information data unmixing endmember abundance mixture pixels
  • 相关文献

参考文献4

二级参考文献74

  • 1张萌,赵慧洁,李娜.高光谱数据光谱分辨率对矿物识别的影响分析[J].红外与激光工程,2006,35(z4):493-498. 被引量:7
  • 2耿修瑞,赵永超,周冠华.一种利用单形体体积自动提取高光谱图像端元的算法[J].自然科学进展,2006,16(9):1196-1200. 被引量:14
  • 3Maurice D Craig. Minimum Volume Transforms for Remotely Sensed Data [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 1994,32:542 - 552.
  • 4Boardman J W Kruse F A, Green R O. Mapping target signatures via partial unmixing of AVIRIS data: in Summaries [ C ]. Fifth JPL Airborne Earth Science Workshop ,JPL Publication 95-1 ( 1 ) :23 - 26.
  • 5Michael E Winter. N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data [ A ]. Imaging Spectrometry V, Proceedings of SPIE[ C ]. 1999,3753, Denver, USA : 266 - 275.
  • 6Agustin Ifarraguerri, Chein-I Chang. Multispectral and Hyperspectral Image Anlysis with Convex Cone [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 1999,37(2) :756 - 770.
  • 7Lidan Miao, Hairong Qi. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45 : 765 -777.
  • 8J Harsanyi, W Farrand, Chein-I Chang. Determining the number and identity of spectral endmembers: An integrated approach using neyman-pearson eigenthresholding and iterative constrained rms error minimization[ C]. In Proc. 9th Thematic Conf. Geologic Remote Sensing, 1993.
  • 9Heinz D C, Chein-I-Chang. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery [ J ]. Geoscience and Remote Sensing, IEEE Transactions on 2001,39 (3) :529 - 545.
  • 10C-J Lin. Projected gradient methods for non-negative matrix factorization [ R]. Dept. Comput. Sci. , Nat. Taiwan Univ. , Taipei, Taiwan, Information and Support Services Tech. Rep. ISSTECH-95-013,2005.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部