期刊文献+

基于卷积神经网络的视频大数据智能预警分析 被引量:6

Intelligent Early Warning Analysis of Video Dig Data Based on Convolutional Neural Network
下载PDF
导出
摘要 大数据时代的到来对电力视频监控应用提出了新的要求,现有的电力视频监控系统基本只承担了远程录像机的作用,视频监控系统在主动预警方面的能力仍然没有体现,变电站仍然不够“智能”。基于卷积神经网络技术,先从现有的视频监控平台中提取出原始视频素材,利用视频云存储平台进行存储和video2pic工具进行数据清洗;然后将现场隐患行为进行分类分析并标记;最后通过特征提取、分类器模型训练和验证,实现对现有视频监控智能化升级。通过对视频大数据的挖掘实现对现场情况的实时智能预警分析,实现对变电站违章作业和营业厅不规范服务行为的自动挖掘、实时预警以及智能推送,摆脱对人工值守的依赖,在降低人力投入的同时提升电力生产安全管控能力和优质服务水平,使电力视频监控系统能充分发挥其“监”与“控”的作用。 The arrival of big data era puts forward new requirements for the application of power video surveillance.The power video monitoring system nowadays only plays the role of remote video recorder basically.The capability of video monitoring system in active early warning is still not used,and the substation is still not"intelligent enough".Based on the convolutional neural network technology,the original video material is extracted from the existing video monitoring platform.The video cloud storage platform is used for storage and video2pic is used for data cleaning.Then people's unsafe behavior of the scene is clas-sified,analyzed and marked.Finally,the intelligent upgrade of the existing video monitoring is realized through feature extrac-tion,classifier model training and verification.Through the mining of large video data,real-time intelligent early warning a-nalysis of the situation on the spot is realized,and automatic mining,real-time early warning and intelligent push of irregular operation and business hall service behavior of substation are realized.By getting rid of the dependence on manual duty,sav-ing labor investment and improving power production safety control capacity and quality service level,the power video monito-ring system can give full play to its"supervision"and"control"role.
作者 邓平 郑鸿 罗冰峰 李明 Deng Ping;Zheng Hong;Luo Bingfeng;Li Ming(State Grid Zigong Electric Power Supply Company,Zigong 646100,Sichuan,China)
出处 《四川电力技术》 2019年第4期49-53,共5页 Sichuan Electric Power Technology
关键词 视频大数据 卷积神经网络 智能预警 video big data convolutional neural network intelligent early warning
  • 相关文献

参考文献3

二级参考文献148

  • 1Q/GDW517.12010电网视频监控系统及接口第1部分:技术规范Is].2010.
  • 2S.00.00.05/Q1060001-0909-6098广东电网变电站视频及环境监控系统技术规范[s].2010.
  • 3赵丙镇.电力通信网的现状及发展[EB/OL].[2011-03-21].http://www.dvbcn.com/2011-08/18-78177.html.
  • 4国家电力监管委员会.电力二次系统安全防护规定(电监会5号令)[S].2005.
  • 5Mokhber A,Achard C,Milgram M. Recognition of Human Behavior by Space-Time Silhouette Characterization[J].Pattern Recognition Let-ters,2008,(01):81-89.
  • 6Polat E,Yeasin M,Sharma R. Robust Tracking of Human Body Parts for Collaborative Human Computer Interaction[J].{H}COMPUTER VISION AND IMAGE UNDERSTANDING,2003,(01):44-69.
  • 7Kjellstr?m H,Romero J,Kragic' D. Visual Object-Action Recogni-tion:Inferring Object Affordances from Human Demonstration[J].{H}COMPUTER VISION AND IMAGE UNDERSTANDING,2011,(01):81-90.
  • 8Suma E A,Krum D M,Lange B. Adapting User Interfaces for Gestural Interaction with the Flexible Action and Articulated Skele-ton Toolkit[J].Computers& Graphics,2012,(03):193-201.
  • 9Ayers D,Shah M. Monitoring Human Behavior from Video Taken in an Office Environment[J].{H}IMAGE AND VISION COMPUTING,2001,(12):833-846.
  • 10López M T,Fernández-Caballero A,Fernández M A. Visual Surveillance by Dynamic Visual Attention Method[J].Pattern Recogni-tion,2006,(11):2194-2211.

共引文献142

同被引文献91

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部