期刊文献+

基于自组织神经网络的火电厂健康状态数据提取算法 被引量:1

Health State Data Extraction Algorithm for Thermal Power Plant Based on Self-Organizing Neural Network
下载PDF
导出
摘要 火电厂设备健康数据提取是火电厂设备状态评估数据处理的一个关键步骤,有利于提高设备状态评估的准确性与效率。将设备状态数据首先利用R型层次聚类进行特征参数选取与冗余数据清除,再采用自组织神经网络筛选异常值。利用所诉方法对某发电厂的汽泵前置泵设备的监测数据进行健康状态数据提取,发现清除的异常数据远远大于提取出的健康数据,表明该方法清除的数据满足预期,为后续健康状态评估提供了准确的参照数据,并且降低监测数据维度提高评估效率。 The health data extraction of thermal power plant equipment is a key step in the processing of equipment state assessment of thermal power plants,which is conducive to improving the accuracy and efficiency of equipment state assessment.The power equipment status data were carried out characteristic parameters selection and redundant data eliminating by R-type hierarchical clustering,then the outliers of device status data were filtered by self-organizing neural network.The proposed algorithm was used to extract the health status data from the monitoring data on turbine pump booster pump device in certain power plant.It is found that The clearing abnormal data is far greater than the extracted health data,which indicates that the algorithm meets the expectation.This algorithm provides the accurate reference data for subsequent health assessment,reducing the monitoring data dimension and improving evaluation efficiency.
作者 吴胜聪 陈雨轩 沈可心 程浩轩 WU Sheng-cong;CHEN Yu-xuan;SHEN Ke-xin;CHENG Hao-xuan(College of Electrical Engineering&New Energy,China Three Gorges University,Yichang 443002,China)
出处 《电工电气》 2019年第9期27-32,共6页 Electrotechnics Electric
关键词 大数据 自组织神经网络 R型聚类 电力设备状态数据 big data self-organizing neural network R-type clustering power equipment status data
  • 相关文献

参考文献7

二级参考文献48

  • 1陈伟根,李伟,陈新岗,陈荣柱.SF_6高压断路器状态分析的模糊综合评判方法[J].高压电器,2004,40(5):361-363. 被引量:26
  • 2吴立增,朱永利,苑津莎.基于贝叶斯网络分类器的变压器综合故障诊断方法[J].电工技术学报,2005,20(4):45-51. 被引量:57
  • 3顾全局,全文涛,沈海华.电动机监测技术在发电厂辅机状态监测中的应用[J].上海电力,2005,18(5):519-521. 被引量:3
  • 4胡晓光,孙来军.SF_6断路器在线绝缘监测方法研究[J].电力自动化设备,2006,26(4):1-3. 被引量:20
  • 5Rukshan Batuwita,Vasile Palade.FSVM-CIL: fuzzy support vector machines for class imbalance learning. IEEE Transactions on Fuzzy Systems . 2010
  • 6IEEE guide for the interpretation of gases generated in oil-immersed transformers. IEEE Standard C57.104—2008 . 2008
  • 7Xiaowei Yang,Guangquan Zhang,Jie Lu,Jun Ma.A Kernel Fuzzy c-Means Clustering-Based Fuzzy Support Vector Machine Algorithm for Classification Problems With Outliers or Noises. IEEE Transactions on Fuzzy Systems . 2011
  • 8Chiara Brighenti,Miguel á. Sanz-Bobi.Auto-Regressive Processes Explained by Self-Organized Maps. Application to the Detection of Abnormal Behavior in Industrial Processes. IEEE Transactions on Neural Networks . 2011
  • 9Chen, Jiyi,Li, Wenyuan,Lau, Adriel,Cao, Jiguo,Wang, Ke.Automated load curve data cleansing in power systems. IEEE Transactions on Smart Grid . 2010
  • 10Messina A R,Vittal V.A structural time series approach to modeling dynamic trends in power system data. Proceedings of 2012 IEEE Power and Energy Society General Meeting . 2012

共引文献142

同被引文献44

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部