期刊文献+

基于故障树贝叶斯网的山区高速公路事故成因分析 被引量:20

An Analysis of Crash Factors for Freeways in Mountain Areas Based on Fault Tree and Bayesian Network
下载PDF
导出
摘要 为分析山区高速公路事故致因因素,采用故障树及贝叶斯网方法,分析各因素对事故的贡献率。建立以事故为顶事件,驾驶员、车辆、道路及环境为次顶事件,事故因素为基本事件的故障树模型;构建基于故障树的贝叶斯网模型,对人、车、路及环境各方面单独分析,定义证据节点的诊断方式计算4个方面的后验概率,找出各方面中最敏感的事件。结果表明,对事故影响较大的基本因素为“未保持安全距离”“超限超载”“长大下坡坡底”和“夜间无照明”;驾驶员、车辆、道路及环境对事故的贡献率分别为54.4%,32.2%,48.1%和4.5%;对人、车、路及环境最敏感的事件分别为“操作不当”、“超限超载”、“长大下坡坡底”和“能见度不足”;基于故障树的贝叶斯网模型不仅可以更高效和简便地对基本因素进行概率推理,而且还能得出更可靠的推论。 To analyze crash factors for freeways in mountain areas,the contribution rate of each factor to traffic accidents is analyzed through fault tree analysis and Bayesian network.A model based on fault tree analysis is developed,which regards crashes as the top event;four factors of driver,vehicle,road,and environment are regarded as intermediate events;and crash factors are regarded as basic events.A Bayesian network model based on the fault tree is developed.The driver,vehicle,road,and environment factors are analyzed separately.A diagnostic method of evidence nodes is defined to calculate the posterior probability of four aspects,and the most sensitive event of each aspect is identified.The results show that the basic factors which have major impacts on traffic accidents are“not keeping safe distance”,“overrun or overload”,“end of long and steep downhill segments”,and“no illumination at night”.The contribution rates of driver,vehicle,road,and environment to traffic accidents are 54.4%,32.2%,48.1%,and 4.5%,respectively.The most sensitive factors to driver,vehicle,road,and environment are“improper operation”,“overrun or overload”,and“end of long and steep downhill segment”and“low visibility”.The Bayesian network model based on the fault tree not only can make more efficiently and conveniently probabilistic reasoning on basic factors,but also can draw more reliable inferences.
作者 由冰玉 廉福绵 孟祥海 YOU Bingyu;LIAN Fumian;MENG Xianghai(School of Transportation Science and Engineering,Harbin Institute of Technology,Harbin Heilongjiang 150090,China;CCCC Highway Consultants Co.,Ltd.Beijing 100088,China)
出处 《交通信息与安全》 CSCD 北大核心 2019年第4期44-51,共8页 Journal of Transport Information and Safety
基金 国家自然科学基金项目(71701055)资助
关键词 交通安全 山区高速公路 事故成因 贝叶斯网 故障树分析 traffic safety mountainous freeway crash factors Bayesian network fault tree analysis
  • 相关文献

参考文献7

二级参考文献52

共引文献60

同被引文献146

引证文献20

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部