摘要
近年来学生整体的体质状况呈现下降的趋势。许多高校实行了阳光晨跑计划,但不尽理想。采用运动心率腕表采集运动心率数据来监控学生课外健身跑状况是较好的方案,由于缺少直接监督,可能会出现一人佩戴多个腕表替他人代跑的情形,这将成为该方案实施的一个技术挑战。对所有时间上重叠的心率序列对抽取距离相关和统计相关的特征,通过基于支持向量机的代跑检测方案,可实现精准并且召回较高的代跑检测。实验验证了所提方法的有效性。
It is reported that the students’physique condition shows a decline trend in recent years.Consequently many universities have enforced early morning fitness running.We claim that a better solution for this issue is to use sports bracelets to supervise fitness running.One of the key technique challenges is to prevent“pinch runner”who wears multiple bracelets to help others meet the extracurricular exercise requirement.To counter this,we extract distance related and statistical features from all time-overlapped heart series pairs,and propose a SVM-based pinch runner detection solution.It can provide precise and high recall pinch runner detection.Our extensive experiments have demonstrated the effectiveness of our solution.
作者
杨良怀
柳乔凡
范玉雷
YANG Lianghuai;Liu Qiaofan;FAN Yulei(College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China)
出处
《浙江工业大学学报》
CAS
北大核心
2019年第5期581-590,共10页
Journal of Zhejiang University of Technology
基金
国家自然科学基金资助项目(61070042)
浙江省自然科学基金资助项目(LY14F020017,LQ15F020007)
关键词
健身跑
运动腕表
时间序列
有监督分类
fitness running
sports bracelet
time series
supervised classification