期刊文献+

Body-Fitted Momentum Source Method for Predicting Rotor Aerodynamics Characteristics in Hover

下载PDF
导出
摘要 To gain high efficiency for the simulation of the aerodynamic characteristics of the rotor in hover,body?fitted momentum source(BFMS)method is proposed.In this method,the actual blade geometry is represented by the single layer of volume grid surrounding the blade.Aiming at correctly simulating the aerodynamic characteristics of the discrete cells along the chordwise of blade airfoil section,a new distributed force model is proposed.For comparison,the RANS method with S?A turbulence model and the steady rotor momentum source(SRMS)method based on embedded grid systems are established,respectively.And the grid connecting methodology is improved to embed the blade into the background grids for the three methods.Then,simulations are performed for the hovering Caradonna?Tung rotor by these methods,and the calculated results are compared with the available experimental data.Moreover,the pressure distributions along the blade are compared with the conventional momentum source methods.It is demonstrated that the BFMS method can be employed as an effective approach to predict rotor aerodynamic characteristics with a low computational resource and reasonable accuracy. To gain high efficiency for the simulation of the aerodynamic characteristics of the rotor in hover,body-fitted momentum source(BFMS)method is proposed. In this method,the actual blade geometry is represented by the single layer of volume grid surrounding the blade. Aiming at correctly simulating the aerodynamic characteristics of the discrete cells along the chordwise of blade airfoil section,a new distributed force model is proposed. For comparison,the RANS method with S-A turbulence model and the steady rotor momentum source(SRMS)method based on embedded grid systems are established,respectively. And the grid connecting methodology is improved to embed the blade into the background grids for the three methods. Then,simulations are performed for the hovering Caradonna-Tung rotor by these methods,and the calculated results are compared with the available experimental data. Moreover,the pressure distributions along the blade are compared with the conventional momentum source methods. It is demonstrated that the BFMS method can be employed as an effective approach to predict rotor aerodynamic characteristics with a low computational resource and reasonable accuracy.
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第4期641-651,共11页 南京航空航天大学学报(英文版)
基金 supported by the Qian Xuesen Innovation Foud of China Aerospace Science and Technolygy Corporation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部