期刊文献+

基于车载LiDAR点云的杆状地物分类研究 被引量:5

On the classification of rod-shaped object based on point cloud of mobile LiDAR
下载PDF
导出
摘要 杆状地物作为常见的公共设施,对其进行自动化精确分类是一项重要工作。文中提出基于车载LiDAR点云的杆状地物自动分类方法:首先,根据杆状地物形态特点,对其进行顶部与杆部分离;再根据杆状地物点云特征提取9种特征向量,构建特征矩阵;然后采用SVM算法,对样本集特征矩阵进行训练并构建分类模型;最后,通过构建的分类模型对测试集进行分类,并与通过先验知识设置阈值的分类算法进行对比实验,实验表明,该算法无需进行多次阈值设定即可对杆状地物进行分类,并且分类精度可达94.7%,证明该算法的正确性与优越性。 As a common public facility,the automatic classification of pole objects is an important task.A method of automatic classification of rod objects based on vehicle LiDAR point cloud is proposed.First of all,according to the characteristics of the pole shape,the top and the rod are separated;nine feature vectors are extracted according to the feature of the point cloud,and the feature matrix is constructed.Then,the SVM algorithm is used to train the feature matrix of the sample set and build the classification model.Finally,the test set is classified by constructing the classification model,compared with the classification algorithm based on prior knowledge.Experiments show that the algorithm does not need multiple thresholds to classify the rod objects,of which the classification accuracy can reach 94.7%.The correctness and superiority of the algorithm is verified.
作者 董亚涵 李永强 李鹏鹏 范辉龙 DONG Yahan;LI Yongqiang;LI Pengpeng;FAN Huilong(School of Surveying and Land Information Engineering,Henan Polytechnic University,Jiaozuo 454003,China)
出处 《测绘工程》 CSCD 2019年第6期58-63,共6页 Engineering of Surveying and Mapping
基金 河南省基础与前沿技术研究(162300410184) 测绘地理信息公益性行业科研专项经费项目(201412020)
关键词 车载LiDAR 点云 SVM 杆状地物 mobile LiDAR point cloud SVM rod-shaped object
  • 相关文献

参考文献9

二级参考文献71

  • 1史文中,李必军,李清泉.基于投影点密度的车载激光扫描距离图像分割方法[J].测绘学报,2005,34(2):95-100. 被引量:90
  • 2吴芬芳,李清泉,熊卿.基于车载激光扫描数据的目标分类方法[J].测绘科学,2007,32(4):75-77. 被引量:25
  • 3Axelsson P.DEM generation from laser scanner data using adaptive TIN models[J].International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,1999XXXIII(B4/1):110-117.
  • 4Axelsson P.Ground estimation of laser data using adaptive tin-models.Proceedings of OEEPE workshop on airborne laser scanning and interferometric SAR for Detailed Digital Elevation Models.March 1-3,Stockholm,Sweden.Official Publication.2000,No.40.CD-ROM,11 pages.
  • 5Axelsson P.Processing of laser scanner data–algorithms and applications[J].ISPRS JPRS.1999 vol.54,pp.138–147.
  • 6VAPNIK V N.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2004.
  • 7卢秀山,黄磊.基于激光扫描数据的建筑物信息格网化提取方法[J].武汉大学学报(信息科学版),2007,32(10):852-855. 被引量:38
  • 8STOVIN V R, JORGENSEN A, CLAYDEN A. Street trees and stormwater management J]]. The Arboricultur- al Journal, 2008, 30(4) : 297-310.
  • 9RIES K, EICHHORN J. Simulation of effects of vegetation on the dispersion of pollutants in street canyons [J]. Meteorologische Zeitschrift, 2001, 10(4): 229-233.
  • 10GROMKE C, BUCCOLIERI R, DI SABATINO S, et al. Dispersion study in a street canyon with tree planting by means of wind tunnel and numerical investigations-Evaluation of CFD data with experimental data l'J]. Atmos- pheric Environment, 2008, 42(37) 8640-8650.

共引文献108

同被引文献56

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部