期刊文献+

一类含参数的多时滞微分方程的正周期解

Positive periodic solutions for a class of differential equations involving parameter and multiple delays
下载PDF
导出
摘要 本文运用锥上的Krasnoselskii不动点定理研究了一类含参数的多时滞微分方程正ω-周期解的存在性,并证明了其正ω-周期解的多重性定理以及不存在性定理. In this paper,we use Krasnoselskii s fixed point theorem on cones to study existence of positiveω-periodic solutions for a class of differential equations involving parameter and multiple delays.We prove some theorems about the multiplicity and the theorem on nonexistence of positiveω-periodic solutions.
作者 张璐 杨和 ZHANG Lu;YANG He(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第5期785-791,共7页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金青年基金(11701457) 甘肃省科技计划(17JR5RA071)
关键词 多时滞微分方程 正周期解 存在性 多重性 不动点定理 Delayed differential equation Positive periodic solution Existence Multiplicity Fixed point theorem
  • 相关文献

参考文献4

二级参考文献44

  • 1黄先开,向子贵.具有时滞的Duffing型方程+g(x(t—τ))=p(t)的2π周期解[J].科学通报,1994,39(3):201-203. 被引量:90
  • 2翁佩萱,梁妙莲.一个造血模型周期解的存在性及其性态[J].应用数学,1995,8(4):434-439. 被引量:12
  • 3Kuang,Y., Feldstein, A.,Boundedness of solutions of a nonlinear nonautonomous neutral delay equation, J.Math.Anal. Appl., 1991,156,293-304.
  • 4Gopalsamy, K., He,X., Wen,L., On a periodic neutral logistic equation, GlasgowMath.J.,1991, 33:281-286.
  • 5Gopalsamy, K., Zhang,B.G., On a neutral delay logistic equation, Dynamics StabilitySystems, 1988,2:183-195.
  • 6Pielou,E.C., Mathematics Ecology, New York:Wiley-Interscience, 1977.
  • 7Kuang,Y. Delay Differential Equations with Applications in Population Dynamics, NewYork: Academic Press, 1993.
  • 8Fang Hui, Li Jibin, On the existence of periodic solutions of a neutral delay modelof single-species population growth, J.Math. Anal. Appl., 2001,259:8-17.
  • 9Gaines, R.E., Mawhin, J.L., Coincidence degree and nonlinear differentialequations, Lectures Notes in Mathematics, Vol.586,Berlin: Springer-Verlag,1977.
  • 10Liu,Z.D., Mao,Y.P., Existence theorem for periodic solutions of higher ordernonlinear differential equations, J.Math.Anal.Appl.,1997,216:481-490.

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部