期刊文献+

燃料分子的低温氧化及其与抗爆性关系的研究进展 被引量:4

Research Progress on Low Temperature Oxidation of Fuel Molecules and Its Relationship With Anti-Knock Property
下载PDF
导出
摘要 燃料在低于1000 K温度范围内的氧化特性对其在发动机中的着火、燃烧的稳定性以及是否发生爆震等尤为重要。氧化特性不仅与发动机的操作参数密切相关,本质上更取决于燃料的分子结构。近年来,关于燃料分子在特定条件下发生氧化反应的理论计算和相关实验发展迅速,为寻求高效清洁燃料奠定了坚实的基础。笔者从化学动力学角度,综述了汽、柴油中典型组分链烷烃、环烷烃、烯烃、芳香烃以及一些含氧类添加剂分子的低温氧化特性,总结了燃料的分子结构与其抗爆性、辛烷值以及十六烷值的关系。最后归纳了该领域研究存在的问题,并对挑战和前景进行了展望。 The oxidation characteristics of fuels in the low temperature range below 1000 K are particularly important for the ignition in the engine,the stability of combustion and the occurrence of knocking.The oxidation is not only related to the operating parameters of the engine,but also essentially depends on the molecular structure.Recently,both theoretical and experimental studies on the oxidation reactions of fuel molecules under specific conditions have been developed rapidly,offering a solid foundation for seeking efficient and clean fuels.Herein,from the perspective of chemical kinetics,the low temperature oxidation characteristics of typical components paraffins,cycloalkanes,olefins,aromatic hydrocarbons and some oxygen-containing additives in gasoline and diesel are summarized,and the relationship of molecular structures with anti-knock property,octane number,and cetane number is proposed.Finally,the issues in this field are summarized,and the challenges and perspectives are prospected.
作者 王俊 杨鹤 田华宇 王鹏飞 宋海清 WANG Jun;YANG He;TIAN Huayu;WANG Pengfei;SONG Haiqing(Research Institute of Petroleum Processing,SINOPEC,Beijing 100083,China)
出处 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2019年第5期1033-1044,共12页 Acta Petrolei Sinica(Petroleum Processing Section)
基金 国家重点研发计划项目(2017YFB0306505)基金资助
关键词 分子结构 低温氧化 化学动力学 爆震 molecular structure low-temperature oxidation chemical kinetics knocking
  • 相关文献

参考文献1

二级参考文献187

  • 1Ranzi, E.; Frassoldati, A.; Grana, R.; Cuoci, A.; Faravelli, T.; Kelley, A. P.; Law, C. K. Prog. Energy Combust. Sci. 2012, 38 (4), 468.
  • 2Yao, M. F.; Zheng, Z. L.; Liu, H. F. Prog. Energy Combust. Sci. 2009, 35 (5), 398. doi: 10.1016/j.pecs.2009.05.001.
  • 3Pilling, M. J. Proc. Combust. Inst. 2009, 32 (1), 27. doi: 10.1016/j.proci.2008.08.003.
  • 4Simmie, J. M. Prog. Energy Combust. Sci. 2003, 29 (6), 599. doi: 10.1016/S0360-1285(03)00060-1.
  • 5Battin-Leclerc, F.; Blurock, E.; Bounaceur, R.; Fournet, R.; Glaude, P. A.; Herbinet, O.; Sirjean, B.; Warth, V. Chem. Soc. Rev. 2011, 40 (9), 4762. doi: 10.1039/c0cs00207k.
  • 6Pilling, M. J. Chem. Soc. Rev. 2008, 37 (4), 676. doi: 10.1039/b715767c.
  • 7de Vijver, R. V.; Vandewiele, N. M.; Bhoorasingh, P. L.; Slakman, B. L.; Khanshan, F. S.; Carstensen, H. H.; Reyniers, M. F.; Marin, G. B.; West, R. H.; Van Geem, K. M. Int. J. Chem. Kinet. 2015, 47 (4), 199.
  • 8Ruscic, B. Active Thermochemical Tables (ATcT), Version 1.112, http://atct.anl.gov/Thermochemical (2014).
  • 9David, R. L. CRC Handbook of Chemistry and Physics, 89th Ed. (Internet version 2009); CRC Press/Taylor and Francis: Boca Raton, FL.
  • 10Goldsmith, C. F.; Magoon, G. R.; Green, W. H. J. Phys. Chem. A 2012, 116 (36), 9033. doi: 10.1021/jp303819e.

共引文献13

同被引文献34

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部