期刊文献+

基于SFS的多模态生理信号情感识别 被引量:1

Multi-modal physiological signal emotion recognition based on SFS
下载PDF
导出
摘要 多模态生理信号通常具有较高的维度,高维度的特征集不仅包括噪声数据和多余数据,影响分类结果,并且在情感识别过程中将花费大量的计算机开销。因此,从高维度的特征集中选取质量较优,影响因子较大的特征具有重要意义。文中主要提取血容量搏动信号,肌电信号,呼吸信号和皮肤电反应信号四种生理信号的平均值、标准偏差、一阶差值的绝对值的平均值、归一化信号的一阶差值的绝对值的平均值、二阶差值的绝对值的平均值、归一化信号的二阶差值的绝对值的平均值这6种统计特征,采用序列前向选择算法进行生理信号特征选择,最后用支持向量机和K近邻作为分类器对选取的特征子集进行样本集的分类,分类的精度作为衡量特征子集好坏的标准。实验结果表明,采用序列前向选择算法,可以选出比原始特征集维度更低且更优的特征子集。 Multi-modal physiological signals usually have higher dimensions.The high-dimensional features not only in clude noise and redundant data,but also affect the classification results.And it takes a lot of computer overhead in the emotion recognition process.It is a question how to select features with better quality and larger impact factors from high-dimensional feature sets.In this paper,we extract six statistical features from the blood flow pulsation,electromyo gram,respiratory signal and skin electrical response.There are extracted mean,standard deviation,the mean of first dif ference absolute value,the mean of second difference absolute value,the mean of normalized first difference absolute value and the mean of normalized second difference absolute value in this experiment.Forward selection algorithm is used for feature selection of physiological signals.Finally,the wrapper is used to classify the selected feature subsets,which the classification accuracy is used as a criterion to measure the quality of the feature subset.The experimental re sults show that the sequence forward selection algorithm can select lower dimensions and better feature subsets than the original features.
作者 王晗 王坤侠 WANG Han;WANG Kunxia(School of Electronics and Information Engineering,Anhui Jianzhu University,Hefei 230601,China)
出处 《安徽建筑大学学报》 2019年第4期83-87,共5页 Journal of Anhui Jianzhu University
基金 佛山市科技创新团队项目(2015IT100095 S) 安徽省自然科学基金(No.1708085MF167)
关键词 生理情感识别 序列前向选择 支持向量机 统计特征 physiological emotion recognition sequence forward selection support vector machine statistical characteris tics
  • 相关文献

参考文献2

二级参考文献14

  • 1徐燕,李锦涛,王斌,孙春明.基于区分类别能力的高性能特征选择方法[J].软件学报,2008(1):82-89. 被引量:83
  • 2Li Qing. Research on the speech emotion recognition based on voice signal [ D ]. Harbin : Harbin Institute of Technology,2011.
  • 3Jin Xue-cheng. A study on recognition of emotions in speech [ D]. Hefei:University of Science and Technology of China,2007.
  • 4Yuan G, Lira T S, Juan W K, et al. A GMM based 2-stage architec- ture for multi-subject emotion recognition using physiological re- sponses[ C]. In:Proc. of the 2010 Augmented Human Int'l Conf. New York: ACM Press,2010,3 : 1-3:6.
  • 5Tang H, Chu S M, Hasegawa-Johnson M, et al. Emotion recognition from speech via boosted gaussian mixture models [ C]. In:Proc. of the 2009 IEEE Int'l Conf. on Ultimedia and Expo (ICME), Piscat- away : IEEE Press ,2009:294-297.
  • 6Gunes H, Schuller B, Pantic M, et al. Support vector regression for automatic recognition of spontaneous emotions in speech [ C ]. In : Proc. of the Int'l Workshop on EmoSPACE, Held in Conjunction with the 9th Int'l IEEE Conf. on Face and Gesture Recognition 2011 ( FG 2011 ), Santa Barbara: IEEE Computer Society,2011:827-834.
  • 7Specht D F. Probabilistic neural networks [ J ]. Neural Networks, 1990,1 (3) :109-118.
  • 8Hart Wen-jing. Research on techniques of neural network based speech emotion recognition [ D ]. Harbin:Harbin Institute of Tech- nology ,2007.
  • 9Zhou Jian. Speech emotion recognition based on rough set and SVM [ D ]. Chengdu : Southwest Jiao Tong University,2007.
  • 10Zhang Xue-ying, Liu Xiao-feng, Wang Zi-zhong. Evaluation of a set of nevl ORF kernel functions of SVM for speech recognition [ J]. Engineering Applications of Artificial Intelligence, 2013,26 : 2574-2580.

共引文献18

同被引文献18

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部