摘要
采用二元树复小波变换(DT-CWT)对特高频局部放电(PD)信号进行多尺度分解,求解了复小波最优分解层数,提取了最优分解尺度下的特高频PD信号实部和虚部高频层小波能量,并采用Fisher线性判别方法对能量特征进行选择,最后进行PD类型辨识。识别结果表明:优选后的实部和虚部高频层小波能量特征可以有效识别4种典型绝缘缺陷,识别率均达到了92.5%及以上,且最优复小波能量(OCWEF)特征在PD类型辨识中具有更优的敏感性和识别效果。
The dual-tree complex wavelet transform(DT-CWT)is adopted to make a multi-scale decomposition of UHF partial discharge(PD)signals,and an optimal algorithm for solving DT-CWT decomposition is proposed.In addition,the optimal complex wavelet energy(OCWE)features are extracted from the high-layer real and imaginary parts of UHF PD signals after decomposed by DT-CWT,and the fisher linear discriminant method is adopted to select the energy features.Finally,the selected features are used for PD type recognition.The results show that the high-layer wavelet energy features can effectively recognize four typical insulation defects in GIS with a recognition accuracy reaching 94.5%or above.It is proved that the OCWE features are more suitable for PD recognition.
作者
田宇
罗沙
李宾宾
孙文
TIAN Yu;LUO Sha;LI Binbin;SUN Wen(State Grid Anhui Electric Power Co.,Ltd.,Hefei 230022,China;Power Research Institute of Anhui Electric Power Co.,Ltd.,Hefei 230022,China;State Grid Electric Power Research Institute,Nanjing 210000,China)
出处
《中国电力》
CSCD
北大核心
2019年第9期93-101,共9页
Electric Power
基金
国家自然科学基金资助项目(51537009)
国网安徽省电力有限公司科技项目(52120016001U)~~
关键词
GIS
局部放电
能量特征
FISHER线性判别
特征选择
高电压测量技术
gas insulated switchgear
partial discharge
energy features
fisher linear discriminant
features selection
high voltage measurement technology