摘要
文章研究一类非线性Riemann-Liouville型分数阶微分方程耦合系统正解的存在性和唯一性.借助格林函数的性质,运用Leray-Schauder抉择理论和Banach压缩映射原理,得到了该耦合系统正解的存在性和唯一性的充分条件,并举例说明了定理的有效性.
In this paper,the existence and uniqueness of positive solutions for a class of coupled systems of nonlinear Riemann-Liouville fractional differential equations are studied.The existence and uniqueness of positive solutions were obtained by using the properties of the associated Green’s function and the nonlinear alternative of Leray-Schauder type and Banach contraction mapping principle.The validity of the theorem is illustrated by examples.
作者
薛益民
戴振祥
XUE Yimin;DAI Zhenxiang(School of Mathematics and Physics,Xuzhou University of Technology,Xuzhou 221018,China)
出处
《徐州工程学院学报(自然科学版)》
CAS
2019年第3期64-68,共5页
Journal of Xuzhou Institute of Technology(Natural Sciences Edition)
基金
国家自然科学数学天元基金项目(11526177)
江苏省自然科学基金项目(BK20151160)
徐州工程学院培育项目(XKY2017113)
关键词
分数阶微分方程
GREEN函数
耦合系统
正解
fractional differential equations
Green's function
coupled system
positive solution