摘要
假设图G是一个n阶简单连通图,图G的距离拉普拉斯矩阵记为D L(G),图G的距离拉普拉斯能量DLE(G)定义为矩阵D L(G)-t(G)I的特征值的绝对值之和,文中给出了DLE(G)关于顶点数、Wiener指标以及det(D L(G)-t(G)I)的界,并证明了某些情况下文章的结论要优于已知的结论。
Suppose G is a simple connected graph with n vertices.The distance Laplacian energy of a graph G,denoted by DLE(G),is defined as the sum of the absolute values of the eigenvalues of G L(G)-t(G)I.In this paper,we present the bounds for the DLE(G)in terms of the number of vertices,Wiener index and detG L(G)-t(G)I.We also show that our conclusions,in some cases,are better than the known ones.
作者
范微
FAN Wei(School of Science,Xihua University,Chengdu Sichuan 610039,China)
出处
《乐山师范学院学报》
2019年第8期7-12,共6页
Journal of Leshan Normal University