期刊文献+

可加风险模型下相依Ⅰ型区间删失数据的一个Copula推断方法 被引量:3

A Copula model approach for the additive hazards model with dependent current status data
原文传递
导出
摘要 可加风险模型是生存分析中一类重要的回归模型,许多学者对该模型进行过研究.但是针对相依Ⅰ型区间删失数据的研究却非常少,且已有的研究都假设删失时间与寿命之间的关联系数已知.显然,该假设在实际中未必成立.针对此问题,本文放松这一假设,提出一种新的基于Copula的方法对可加风险模型下相依Ⅰ型区间删失数据进行回归分析,给出参数部分估计量的渐近性质,通过数值模拟检验所提方法在有限样本下的表现,并进行实例分析. The additive hazards model is one of the most commonly used regression models in survival data analysis and many authors have discussed its inference under various situations. However, there exists very little literature on the analysis of dependent current status data under the additive hazards model, and the existing methods assume that the association coeffcient between the censoring time and the failure time is known. It is apparent that this may not be true in practice and corresponding to this, in this paper, we propose a new Copula model-based approach that does not need the assumption for analyzing the dependent current status data. The asymptotic properties of the resulting estimators are established, and a simulation study is conducted and suggests that the proposed method performs well for practical situations. Also an illustrative example is provided.
作者 赵慧 崔琪 孙建国 Hui Zhao;Qi Cui;Jianguo Sun
出处 《中国科学:数学》 CSCD 北大核心 2019年第9期1261-1272,共12页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11471135)资助项目
关键词 可加风险模型 COPULA模型 Ⅰ型区间删失数据 相依删失 additive hazards model Copula model current status data dependent censoring
  • 相关文献

参考文献1

二级参考文献24

  • 1Andersen P K, Gill R D. Cox’s regression model for counting processes: A large sample study. Ann Statist, 1982, 10: 1100–1120.
  • 2Bickel P, Klaassen C, Ritov Y, et al. Efficient and Adaptive Estimation for Semiparametric Models. Baltimore: Johns Hopkins University Press, 1993.
  • 3Clayton D G. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 1978, 65: 141–151.
  • 4Ding A A, Wang W. Testing independence for bivariate current status data. J Amer Statist Assoc, 2004, 99: 145–155.
  • 5Dunson D B, Dinse G E. Bayesian models for multivariate current status data with informative censoring. Biometrics, 2002, 58: 79–88.
  • 6Genest C, Rivest L P. Statistical inference procedures for bivariate Archimedean copulas. J Amer Statist Assoc, 1993,88: 1034–1043.
  • 7Goggins W B, Finkelstein D M. A proportional hazards model for multivariate interval-censored failure time data. Biometrics, 2000, 56: 940–943.
  • 8Guo S W, Lin D Y. Regression analysis of multivariate grouped survival data. Biometrics, 1994, 50: 632–639.
  • 9Hougaard P. Analysis of Multivariate Survival Data. New York: Springer, 2000.
  • 10Huang J. Efficient estimation for the proportional hazards model with interval censoring. Ann Statist, 1996, 24: 540–568.

同被引文献7

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部