摘要
基于精确几何的思想,建立考虑边界几何形状,减小单元划分过程中产生几何误差的边界积分方程.积分过程中,积分项的奇异性问题通过采用Cauchy主值积分和Hadamard有限部分积分的方法来进行克服.同时,在边界元法求解声场问题过程中,出现的由非真实频率而引起的结果偏差可以通过Burton-Miller方法来解决.数值算例表明,考虑真实边界的精确几何-边界元方法具有较好的精确度.
Based on the theory of exact geometric analysis,the real geometric boundaries are considered,the error created by meshing is decreased,and a new boundary integral equation is introduced.The method of Cauchy principle value integrals and Hadamard finite-part integral are used to solve the problem of singular term integrals.Besides,non-unique solution caused by fictitious frequency is circumvented through the Burton-Miller method.Numerical examples show that the method considering the exact geometric boundary has a good accuracy.
作者
张伟
王士革
卢闯
ZHANG Wei;WANG Shige;LU Chuang(College of Architecture and Civil Engineering,Xinyang Normal University,Xinyang 464000,China)
出处
《信阳师范学院学报(自然科学版)》
CAS
北大核心
2019年第4期534-538,共5页
Journal of Xinyang Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11702238)
河南省高等学校重点科研项目(20A560018)
国家级大学生创新创业训练计划项目(201810477006)