期刊文献+

基于Bingham模型的磁流变阻尼器模型改进研究 被引量:5

Research of Improving MRD Model Based on Bingham Model
下载PDF
导出
摘要 磁流变阻尼器能够实现阻尼可控,作为半控制的智能器件应用在众多领域。在实验基础上,基于Bingham力学模型,建立了包括线性和非线性的磁流变液阻尼器的力学模型,通过数学方法对模型参数进行辨识,得到对应的方程。由于多项式的非线性模型,容易产生Runge振荡现象,而不能通过有效的方法得到合适阶数,所以采用傅立叶级数建立非线性模型。分别对线性和非线性模型与实验结果进行对比分析,得到的结果表明:线性模型在有加载电流下,低速时不能准确表达阻尼器的实际特性,基于傅立叶级数的非线性模型能够准确地反映磁流变阻尼器的非线性响应,曲线和实验结果基本吻合。研究结果为磁流变阻尼器动力模型的建立提供了参考。 Magnetorheological damper(MRD)can realize controllable damping,which is used as a semi-controlled smart device in many fields.On the basis of the experiment and based on the Bingham mechanical model,mechanical model of MRF damper including linear and non-linear are established.Each of the theoretical mathematical model was obtained after parameter identification.Due to the non-linear polynomial model was easy to produce Runge turbulence,and the appropriate order could not be obtained by effective methods.Therefore,the nonlinear model was built by Fourier series.The linear and nonlinear models were compared with the experimental results respectively.The results show that the linear model can not accurately represent the actual characteristics of damper at a low speed with a load current.The nonlinear model based on Fourier series can exactly reflect the nonlinear response of the MRD,and the curve is basically consistent with the experimental results.The results can provide the reference of MRD dynamics model of establishment.
作者 祝世兴 郝新琛 ZHU Shixing;HAO Xinchen(Aviation Engineering Institute,Civil Aviation University of China,Tianjin 300300,China)
出处 《机床与液压》 北大核心 2019年第17期98-102,128,共6页 Machine Tool & Hydraulics
基金 航空工业集团产学研专项项目(cxy2013MH35)
关键词 磁流变阻尼器 Bingham模型 线性模型 非线性模型 Magnetorheological damper Bingham model Linear model Non-linear model
  • 相关文献

参考文献5

二级参考文献28

  • 1李惠,刘敏,欧进萍,关新春.斜拉索磁流变智能阻尼控制系统分析与设计[J].中国公路学报,2005,18(4):37-41. 被引量:31
  • 2陆正刚,胡用生.基于磁流变阻尼器的铁道车辆结构振动半主动控制[J].机械工程学报,2006,42(8):95-100. 被引量:19
  • 3Ok S Y, Kim D S, Park K S, et al. Semi-active fuzzy control of cable-stayed bridges using magneto-rheologicaldampers [ J ]. Engineering Structures, 2007, 29:776 - 778.
  • 4Stanway R, Sproston J L, EI-Wabed A K, Applications of electro-theological fluids in vibaration control: a survey [ J ]. Smart Materials and Structures, 1996,5 (4) : 464- 482.
  • 5Pang L, Kamath G M, Wereley N M, Analysis and testing ofa linear stroke magnetorheologieal damper [ J ]. AIAA 98 - 2040,1998, CP8903 (4) : 2841 - 2856.
  • 6Spencer Jr B F, Dyke S J, Sain M K, et al. Phenomenologieal model of a magnetorheological damper [J]. Journal of Engineering Mechanics, ASCE, 1997,123 (3) :230-238.
  • 7Dyke S J, Spencer B F, Sain M K, et al. Modeling and control of magnetorheological dampers for seismic response reduction[J]. Smart Materials and Structures, 1996, 5(5) : 565 - 575.
  • 8Choi S B, Lee S K, Park Y P, A hysteresis model for the field-dependent damping foree of a magnetorheological damper [J]. Journal of Sound and Vibration, 2001,245(2) : 375 - 383.
  • 9刘永强,杨绍普,申永军.基于磁流变阻尼器的汽车悬架半主动相对控制[J].振动与冲击,2008,27(2):154-156. 被引量:17
  • 10张莉洁,王炅,钱林方.冲击载荷下磁流变阻尼器动态特性试验分析[J].兵工学报,2008,29(5):532-536. 被引量:13

共引文献37

同被引文献71

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部