摘要
高光谱遥感数据为树种的精细识别提供了可能。为探索高光谱数据在 树种识别中的能力,本研究基于深圳市坝光古银叶树群落的8种主要树种叶片 高光谱数据,比较了6种光谱预处理方式和2种分类方法对树种分类识别精度的 影响,并基于随机森林算法对不同树种识别的特征波段进行了识别。研究结果 表明,一阶导数预处理方法在分类识别中性能最好,平均分类精度为76.65%;随机森林回归方法较支持向量回归算法的性能好,模型平均分类识别精度为 73.07%。从混淆矩阵可以看出,多毛茜草、银柴、阴香易错分为假萍婆,鸭脚 木与银柴易错分,银叶树和细叶榕易错分。400nm、495nm、615~675nm、 835nm、915~975nm、1035~1065nm、1085~1135nm、1265~1275nm、1425 ~1535nm、2040nm、2100~2270nm、2430nm附近的光谱数据与8个树种分 类识别有密切关系。
Hyperspectral remote sensing data provides the possibility for fine identification of tree species.In order to explore the ability of hyperspectral data in tree species identification,this study is based on the leaf hyperspectral data of eight major tree species in the heritiera littoralis community of Baguang,Shenzhen,and compared the performance of six spectral preprocessing methods and two classification methods to classify tree species.Then based on the random forest algorithm,the importance of the each band was evaluated.The results showed that the first derivative preprocessing method had the best performance in classification and identification,and the average classification accuracy was 76.65%.The random forest regression method had better performance than the support vector regression algorithm,and the model average classification recognition accuracy was 73.07%.It can be seen from the confusion matrix that Aidia pycnantha,Aporosa dioica,Cinnamomum burmanni were recoginized as Sterculia lanceolato.There were the misclassification between Scheffero octorphylla and aporosa diocia.And Heritiera littoralis was also misclassified as Ficus microcarpa.Spectral data near 400 nm,495 nm,615-675 nm,835 nm,915-975 nm,1035-1065 nm,1085-1135 nm,1265-1275 nm,1425-1535 nm,2040 nm,2100-2270 nm,and 2430 nm are identified as the spectral features,which are most important for the classification of eight tree species.
作者
李丹
黄钰辉
孙中宇
张卫强
甘先华
王佐霖
孙红斌
杨龙
LI Dan;HUANG Yu-hui;SUN Zhong-yu;ZHANG Wei-qiang;GAN Xian-hua;WANG Zuo-lin;SUN Hong-bin;YANG Long(Guangdong Provincial Geospatial Information Technology and Application Public Laboratory,Guangzhou Institute of Geography,Guangzhou 510070,China;Guangdong Key Laboratory of Forest Cultivation and Protection and Utilization,Guangdong Academy of Forest,Guangzhou 510520,China;Shenzhen Wildlife Rescue Center,Shenzhen 518040,China)
出处
《红外》
CAS
2019年第7期47-52,共6页
Infrared
基金
广东省科技计划(2017A020216022、2018B030324002)
广东省科学院创新人才引进资助专项(2017GDASCX-0805)
广东省科学院实施驱动发展能力建设专项(2018GDASCX-0403)
林业科技创新平台运行补助项目(2018-LYPT-DW-069)
关键词
机器学习
树种分类
高光谱
叶片
machine learning
tree species classification
hyperspectral
leaf