期刊文献+

噪声相关带偏差线性系统的滤波融合算法 被引量:4

Filtering Fusion Algorithm for Linear Systems with Correlated Noises and Bias
下载PDF
导出
摘要 传统线性两阶段Kalman滤波算法无法应对噪声相关情形,导致较低的实际应用性能。针对该问题,以线性系统中状态与测量噪声相关的多传感器偏差估计系统为对象,以基于模型等效变换技术的噪声相关两阶段Kalman滤波器为基本滤波器,分别在序贯分布式和并行式框架下建立两种两阶段Kalman滤波融合算法。其中,序贯分布式融合算法将多个局部两阶段Kalman滤波器的估计结果以序贯加权的形式进行融合;并行式融合算法分别对偏差滤波估计和无偏差滤波估计进行融合,再利用线性方程将融合后的结果进行组合,得到状态估计值。仿真结果表明:相比于两阶段Kalman滤波器和序贯分布式两阶段Kalman滤波融合估计器,并行式两阶段Kalman滤波融合估计器在滤波估计精度上具有更高的性能。 The traditional linear two-stage Kalman filtering algorithm can not cope with the situation with correlated noises,and its practical application performance is low.For this problem,the multi-sensor bias estimation system in which state noise is correlated to measurement noise is taken as the object,a two-stage Kalman filter with correlated noises based on equivalent transformation technique of model is used as basic filter,two kinds of two-stage Kalman filtering fusion algorithms are established in sequential distributed and parallel framework,respectively.The sequential distributed fusion algorithm fuses the estimates of multiple local two-stage Kalman filter in a sequential weighted form,while the parallel fusion algorithm fuses the estimates of the bias filter and the bias-free filter separately;and then the linear equation is used to combine the fused results to obtain the state estimation.The simulation results show that the parallel two-stage Kalman filter fusion estimator has higher performance in filtering estimation accuracy than the two-stage Kalman filter and the sequential distributed two-stage Kalman filter fusion estimator.
作者 王宏 葛泉波 WANG Hong;GE Quanbo(School of Automation,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处 《杭州电子科技大学学报(自然科学版)》 2019年第5期48-55,共8页 Journal of Hangzhou Dianzi University:Natural Sciences
关键词 两阶段Kalman滤波算法 偏差估计 噪声相关 序贯分布式融合算法 并行式融合算法 two-stage Kalman filtering algorithm bias estimation correlated noises sequential distributed fusion algorithm parallel fusion algorithm
  • 相关文献

参考文献8

二级参考文献32

  • 1江俊,沈艳霞,纪志成.基于EKF的永磁同步电机转子位置和速度估计[J].系统仿真学报,2005,17(7):1704-1707. 被引量:29
  • 2秦峰,贺益康,贾洪平.基于转子位置自检测复合方法的永磁同步电机无传感器运行研究[J].中国电机工程学报,2007,27(3):12-17. 被引量:62
  • 3Bar-Shalom Y,Blair W D.Multitarget-multisensor tracking:applications and advances[M].Boston:Artech House,2000.
  • 4Li X R.Multiple-model estimation with variable structure-part Ⅱ:model-set adaptation[J].IEEE Transactions on Automatic Control,2000,45 (11):2 047-2 060.
  • 5Daeipour E,Bar-Shalom Y.An interacting model approach for target with Glient noise[J].IEEE Transactions on Aerospace and Electronics,1995,31(2):706-716.
  • 6L A Johnston,V Krishnamurthy.An improvement to the interacting multiple model (IMM) algorithm[J].IEEE Transactions on Signal Processing,2001,49(12):2 909-2 923.
  • 7Alouani A T,Xia P,Rice T R,et al.A two-stage Kalman estimator for state estimation in the presence of random bias and for tracking maneuvering targets[C]//Proceedings of 30th IEEE Conference on Decision and control.New York:IEEE,1991:2 059-2 062.
  • 8Alouani A T,Xia P,Rice T R,Blar W D On the Optimality of Two-Stage State Estimation in the presence of Random Bias[C]//IEEE Trans on Automat.Contr.US:IEEE,1993 AC:1 279-1 282.
  • 9Lin H J,D P Athertion.Invetigation of IMM tracking algorithm for maneuvering target tracking[C]//First IEEE Regional Conference on Aeropace Control System.US:IEEE,1993:113-117.
  • 10宋章军.服务机器人的研究现状与发展趋势[J].集成技术,2012,1(3):1-9. 被引量:41

共引文献22

同被引文献29

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部