期刊文献+

基于深度学习的光场加密图像恢复技术

Light field multi-decryption image improvement algorithm based on deep learning
下载PDF
导出
摘要 光场技术可以将图像加密从二维提升到三维,加强加密的安全性。采用重聚焦算法实现图像解密时会引入图像间的干扰。以深度学习技术为框架,分析图像干扰的规律性,构造模拟光场数据集,创建了一个7层的全卷积神经网络,以模拟光场数据集作为输入,原图作为标签,训练一个全卷积神经网络,将真实光场解密图像输入得到结果。实验结果表明,利用全卷积神经网络可以有效改善光场解密图像的干扰问题,改善解密后的图像质量。 Light field technology can boost image encryption technology from two-dimensional to three-dimensional,and enhance the security of encryption.The refocusing algorithm can be used to achieving image decryption.However,it will introduce interference between images.Based on the deep learning technology,the regularity of image interference is analyzed.The simulated light field data set is constructed.This paper creats a 7-layer full convolutional neural network.As for training the full convolutional neural network,the simulated light field data set is used as input,while the original images are used as labels and input into the full convolutional neural network.Then the real light field decrypted images are input to for testing.The experimental results show that the full convolutional neural network can decrease the interference of the optical field decrypted images obviously and improve the image quality effectively.
作者 朱震豪 韩思敏 张薇 ZHU Zhenhao;HAN Simin;ZHANG Wei(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《光学仪器》 2019年第4期1-7,共7页 Optical Instruments
基金 国家重点研发计划资助课题(2016YFF0101402) 国家自然科学基金项目(61205015)
关键词 光场技术 深度学习 图像加密 全卷积神经网络 图像处理 light field technology deep learning image encryption fully convolutional neural network image processing
  • 相关文献

参考文献3

二级参考文献43

  • 1BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 2BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 3HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 4BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 5LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 6VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 7VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 8YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.
  • 9POON H, DOMINGOS P. Sum-product networks:a new deep architec- ture[ C ]//Proc of IEEE Intemational Conference on Computer Vi- sion. 2011:689-690.
  • 10BENGIO Y,LECUN Y. Scaling learning algorithms towards AI[ M]// BOTTOU L,CHAPELLE O, DeCOSTE D,et al. Large-Scale Kernel Machines. Cambridge: MIT Press ,2007:321-358.

共引文献625

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部