摘要
针对传统的最小均方误差(LMS)自适应滤波算法由于步长固定,在解决稳态误差与收敛性之间的关系时,始终处于矛盾状态的问题,在对传统的固定步长LMS自适应滤波算法分析的基础上,根据变步长LMS自适应滤波算法的步长调整原则,通过构造步长因子与误差信号的非线性函数,提出了一种基于正态分布曲线的变步长LMS自适应滤波算法,并分析了参数取值对算法性能的影响。理论和海试数据分析结果表明:该算法的收敛速度和稳态误差明显优于固定步长的LMS自适应滤波算法和基于Sigmoid函数的变步长LMS自适应滤波算法(SVS-LMS)。
Traditional LMS adaptive filtering algorithm is always in a contradiction state because it has a fixed step size and resolves the relationship between steady-state error and convergence.To solve this problem,based on the analysis of the traditional fixed-step LMS adaptive filter algorithm,according to the step-size adjustment principle of the variable-step LMS adaptive filter algorithm,a variable step size LMS adaptive filtering algorithm based on the normal distribution curve is proposed by constructing the nonlinear function of the step-size factor and the error signal,and the influence of the parameter value on the performance of the algorithm was analyzed.The theoretical and sea trial data analysis results show that the convergence speed and steady-state error of the proposed algorithm are obviously better than the fixed-step LMS adaptive filtering algorithm and the variable step size LMS adaptive filtering algorithm(SVS-LMS)based on the Sigmoid function.
作者
马凯
王平波
武彩
MA Kai;WANG Ping-bo;WU cai(Naval University of Engineering,Wuhan Hubei 430033,China;State Grid Shandong Electric Power CompanyWeifang Power Supply Company,Weifang Shandong 261021,China)
出处
《计算机仿真》
北大核心
2019年第9期295-299,共5页
Computer Simulation
关键词
自适应滤波
最小均方误差
变步长
正态分布曲线
Adaptive filtering
Minimum mean square error
Variable step size
Normal distribution curve