期刊文献+

一类具有互补型营养基的时滞恒化器模型Hopf分支的存在性 被引量:1

Existence of Hopf Bifurcation for a Delay Chemostat Model with Complementary Nutrients
原文传递
导出
摘要 该文研究了一类具有互补型营养基和两个不同时滞的微生物培养恒化器模型.首先利用Lyapunov函数和极限集理论使系统降维,然后对时滞分情况讨论其对系统动力学行为的影响,得到系统平衡点稳定和Hopf分支存在的充分条件.最后,通过数值模拟验证了主要结论的正确性. This paper studies the existence of Hopf bifurcation for a chemostat model with complementary nutrients and two different delays.Firstly,a four dimension system is reduced to a two dimension system by Lyapunov function and limit set theory.Afterwards,according to the different cases of the delays,respectively,the influence of delays on the dynamic behaviors of the system is discussed,the sufficient conditions are obtained for the stability of the positive equilibrium and the existence of Hopf bifurcation in this system.Finally,some numerical simulations are carried out to verify the theoretical results in this paper.
作者 孙树林 郭翠花 张宁 SUN SHULIN;GUO CUIHUA;ZHANG NING(School of Mathematics and Computer Science,Shanxi Normal University,Linfen 041000,China;School of Mathematics Science,Shanxi University,Taiyuan 030006,China)
出处 《应用数学学报》 CSCD 北大核心 2019年第5期629-646,共18页 Acta Mathematicae Applicatae Sinica
基金 山西省自然科学基金(201801D121011)资助项目
关键词 恒化器 时滞 HOPF分支 稳定 chemos tat delays Hopf bifurcation st ability
  • 相关文献

参考文献1

二级参考文献10

  • 1Smith H, Waltman P. Theory of Chemostst. Cambridge: Cambridge University, 1995.
  • 2Hsu S B, Cheng K S, Hubbell S P. Exploitive competition of microorganisms for two comple- mentary nutrients in continuous cultures. SIAM Journal on Applied Mathematics, 1981, 43(3): 422-444.
  • 3Hsu S B, Hubbell S P, Waltman P. A mathematical theory of single-nutrient competition in continuous cultures of microorganisms. SIAM Journal on Applied Mathematics, 1977, 32(2): 366-383.
  • 4Leon J A, Tumppson D B. Competition between two species for two complementory or two substitutable resources. Journal of Theoretical Biology, 1975, 50(1): 185-201.
  • 5Baltzis B C, Fredrickson A G. Limitation of growth rate by two complementary nutrients: some elementary and neglected considerations. Biotechnology and Bioengineering, 1988, 31(1): 75-86.
  • 6陈启韶,彭临平,杨卓琴.常微分方程与动力系统.北京:北京航空航天大学出版社,2010.
  • 7Sun S L, Chen L S. Dynamic behaviors of Monod type chemostat model with impulsive pertur- bation on the nutrient concentration. Journal of Mathematical Chemistry, 2007, 42(4): 837-847.
  • 8Sun S L, Chen L S. Complex dynamics of a chemostat with variable yield and periodically impulsive perturbation on the substrate. Journal of Mathematical Chemistry, 2008, 43(1): 338 349.
  • 9孙树林,张瑞娟,曾丽.一个四分子饱和可逆生化反应模型的定性分析[J].高校应用数学学报(A辑),2011,26(4):407-414. 被引量:4
  • 10孙树林,张瑞娟.具有时滞和脉冲输入的一类双资源和两种微生物恒化器模型的分析[J].系统科学与数学,2012,32(1):111-120. 被引量:4

共引文献3

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部