摘要
高温钛合金具有比强度高、耐高温、蠕变抗性、疲劳性能良好等优点,是航空发动机盘件、叶片等热端关键部件的重要结构材料。同时,相比于铝、镁轻合金,钛合金高温性能优异,因而在航空发动机耐热构件的选材当中越来越受青睐。在总结各国近年来发展高温钛合金思路的基础上,依据传统近α型Ti-Al-Sn-Zr-Mo-Si系高温钛合金的设计思想,分别添加微量元素Er和Re,设计了具有自主知识产权的Ti-6.5Al-2.5Sn-9Zr-0.5Mo-1Nb-1W-0.25Si-0.1Er和Ti-6.5Al-2.5Sn-9Zr-0.5Mo-1Nb-1W-0.25Si-0.1Re两种耐650℃高温钛合金。通过对新合金热加工工艺和热处理制度的优化,使合金达到了热强性、热稳定性和蠕变抗性的最佳匹配模式。为高温钛合金在航空航天领域的应用提供试验依据和理论基础。
High temperature titanium alloy has the advantages of high specific strength,high temperature resistance,creep resistance,and good fatigue performance.It is an important structural material for key components such as aero-engine disk parts and blades.At the same time,compared with aluminum and magnesium light alloys,titanium alloys have excellent high temperature performance,and thus have considerable application potential in aero-engine high temperature resistant parts.Conventional near-αtype high-temperature titanium alloys have di fficulty in coordinating heat and thermal stability,a sharp drop in high-temperature oxidation resistance,and a titanium fire problem in local components.According to the design idea of traditional nearαtype Ti Al Sn Zr Mo Si hightemperature titanium alloy,the trace elements Er and Re were added respectively,and Ti 6.5Al 2.5Sn 9Zr 0.5Mo 1Nb 1W 0.25Si 0.1Er and Ti 6.5Al 2.5Sn 9Zr 0.5Mo 1Nb 1W 0.25Si 0.1Re two kinds of high temperature resistant titanium alloys for 650℃with independent intellectual property rights were designed.The best matching mode for thermal strength,thermal stability and creep resistance is sought from the perspective of regulating the thermal processing process and optimizing the heat treatment system.It provides experimental and theoretical basis for the application of high temperature titanium alloy in the aerospace industry.
作者
陈子勇
刘莹莹
靳艳芳
马小昭
柴丽华
崔亚鹏
CHEN Ziyong;LIU Yingying;JIN Yanfang;MA Xiaozhao;CHAI Lihua;CUI Yapeng(College of Materials Science and Engineering,Beijing University of Technology,Beijing 100124,China)
出处
《航空制造技术》
2019年第19期22-30,共9页
Aeronautical Manufacturing Technology
关键词
650℃
高温钛合金
微合金化
热加工
热处理
650℃
High-temperature titanium alloy
Microalloying
Thermomechanical processing
Heat treatment