期刊文献+

移动社交网络的多重分形影响因素分析

Multifractal Influencing Factors Analysis of Mobile Social Network
下载PDF
导出
摘要 为更好地描述移动社交网络时间序列的动态演化性,研究Camb lab、MIT、Inf 05和Roller 4个典型的移动社交网络数据集的多重分形特征,并基于盒子覆盖算法提出移动社交网络多重分形分析方法。通过对网络的概率密度分布和配分函数的分析,计算得到多重分形谱的极大值f(α)、谱宽W和对称性程度B,证明移动社交网络具有多重分形的特征。在此基础上,计算网络度量指标,对比分析影响移动社交网络的多重分形的内在影响因素。实验结果表明,网络度分布表现为幂律分布,当同配系数r<0时,网络的多重分形特征表现越明显,网络内部结构分布越不规则。 In order to better describe the dynamic evolution of mobile social network time series,based on the multifractal features of four typical mobile social networks:Camb lab,MIT,Inf 05,and Roller,this paper proposes an analysis method of mobile social network multifractals based on the box covering algorithm.Through the analysis of the probability density distribution and the partition function of the network,the maximum value f(a),the spectral width W and the degree of symmetry B of the multifractal spectrum are calculated,which proves that the mobile social network has multifractal features.On this basis,the network metric indexs are calculated,and the intrinsic influencing factors of the multifractals of the mobile social network are compared and analyzed.Experimental results show that the network degree distribution is represented by power law distribution.When the assortativity coefficient r is smaller than 0,the multifractal characteristics of the network are more obvious,and the internal structure distribution of the network is more irregular.
作者 郑巍 张紫枫 潘浩 ZHENG Wei;ZHANG Zifeng;PAN Hao(School of Software,Nanchang Hangkong University,Nanchang 330063,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第10期90-95,共6页 Computer Engineering
基金 国家自然科学基金(61867004,61501217) 江西省教育科学“十三五”规划2017年度重点课题(17ZD033)
关键词 多重分形 移动社交网络 盒子覆盖算法 度分布 同配系数 multifractal Mobile Social Network(MSN) box-covering algorithm degree distribution assortativity coefficient
  • 相关文献

参考文献9

二级参考文献173

  • 1邵靓.重要用户的风险评估体系研究[J].电气应用,2013,0(S1):561-563. 被引量:3
  • 2马庆国,徐青,廖振鹏,张彩江.知识转移的影响因素分析[J].北京理工大学学报(社会科学版),2006,8(1):40-43. 被引量:73
  • 3[1]Wasserman S,Faust K.Social Network Analysis:Methods and Applications[M].Cambridge,NY:Cambridge University Press,1994.
  • 4[2]Milgram S.The small-world problem[J].Psychology Today,1967,2:60-67.
  • 5[3]Watts D J,Strogatz S H.Collective dynamics of 'small-world' networks[J].Nature,1998,393:440-442.
  • 6[4]Barabási A L,Albert R.Emergence of scaling in random networks[J].Science,1999,286:509-512.
  • 7[6]Granovetter M S.The strength of weak ties[J].American Journal of Sociology,1973,78(6):1360-1380.
  • 8[7]Newman M E J.Assortative mixing in networks[J].Phys Rev Left,2002,89:208701.
  • 9[8]Newman M E J,Park J.Why social networks are different from other types of networks[J].Phys Rev E,2003,68:036122.
  • 10[9]Shi X,Adamic L A,Strauss M J.Networks of strong ties[J].Physica A,2007,378:33-47.

共引文献150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部