期刊文献+

基于分组码的结构性数据干扰检测方法 被引量:1

Structural Data Interference Detection Method Based on Block Code
下载PDF
导出
摘要 为对结构性数据的高效干扰进行检测,以线性分组码为研究对象,在经典能量检测算法的噪声模型中加入恶意干扰信号,推导二元假设模型中检验统计量的数学表达式。在此基础上,以虚警率与漏检率之和最小为准则,提出一种基于最优检测门限的能量检测算法。仿真结果表明,该算法在低干信比条件下依然能够检测出高效干扰,且检测概率高于基于CFAR门限理论的检测算法。 In order to detect the high-efficiency interference of structural data,the linear block code is taken as the research object,and malicious interference signals are added to the noise model of classical energy detection algorithm to deduce the mathematical expression of test statistics in binary hypothesis model.On this basis,taking the minimum sum of false alarm rate and missed detection rate as the criterion,an energy detection algorithm based on optimal detection threshold is proposed.Simulation results show that the algorithm can detect high-efficiency interference at a low signal-to-interference ratio,and the detection probability is higher than that of the algorithm based on CFAR threshold theory.
作者 逄天洋 李永贵 牛英滔 夏志 韩晨 PANG Tianyang;LI Yonggui;NIU Yingtao;XIA Zhi;HAN Chen(School of Communication Engineering,Army Engineering University,Nanjing 210000,China;National University of Defense Technology,Nanjing 210000,China)
出处 《计算机工程》 CAS CSCD 北大核心 2019年第10期155-159,共5页 Computer Engineering
基金 江苏省自然科学基金(BK20151450)
关键词 线性分组码 结构性数据 能量检测 最优门限 干扰检测 linear block code structural data energy detection optimal threshold interference detection
  • 相关文献

参考文献5

二级参考文献39

  • 1刘好,邢镇容.图的布尔矩阵化简[J].计算机仿真,2004,21(5):68-70. 被引量:1
  • 2刘玉君.信道编码[M].郑州:河南科学技术出版社,2006.
  • 3MORELOS- ZARAGOZA R H. The Art of Error Correcting Coding[ M ]. John Wiley &Sons, Ltd, 2002.
  • 4MITOLA J. Cognitive radio: making software radios more personal [J]. IEEE Pers Commun, 1999, 6(4) :13-18.
  • 5SAHAI A, HOVEN N, TANDRA R. Some fundamental limits on cognitive radio [ C] // Forty-Second Allerton Conference on Communication, Control and Computing, Monticello, Va, USA. 2004:10.
  • 6URKOWITZ H. Energy detection of unknown detenninistic signals [J]. Proc IEEE, 1967, 55:523-531.
  • 7SHELLHAMMER S, TAWIL V, CHOUINARD G, et al. IEEE 802. 22-06/0028r5, Spectrum sensing simulation model[S]. 2006.
  • 8TANDRA R, SAHAI A. Fundamental limits on detection in low SNR under noise uncertainty [ C] // Proc of the Wireless Comm' 05 Symposium on Signal Processing.2005:464-469.
  • 9SONNENSCHEIN A, FISHMAN P M. Radiometric detection of spread-spectrum signals in noise of uncertain power [J]. IEEE Trans on AES, 1992, 28(3) :654-660.
  • 10SADJADI F. Hypotheses testing in a distributed environment [ J]. IEEE Trans on AES, 1986, 22 (2) : 134-137.

共引文献73

同被引文献9

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部